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SYLLABUS: DIFFERENCE EQUATIONS

Objectives:

Difference equations usually describe the evolution of certain phenomena over the
course of time. The aim of studying this course is

• to introduce the difference calculus

• to study linear difference equations and to know how to solve them

• to know the stability theory for homogeneous linear system of difference equa-
tions

• to study the asymptotic behavior of solutions of homogeneous linear difference
equations

UNIT I: Difference Calculus Difference operator - Summation – Generating func-
tions and approximate summation.

UNIT II: Linear Difference Equations First order equations - General results for
linear equations - Solving linear equations.

UNIT III: Linear Difference Equations(continuation) Equations with variable co-
efficients – The z -transform.

UNIT IV: Stability Theory Initial value problems for linear systems – Stability of
linear systems.

UNIT V: Asymptotic Methods Introduction – Asymptotic analysis of sums – Linear
equations.
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1. W.G. Kelley and A.C. Peterson, “Difference Equations”, 2nd Edition, Academic
Press, New York, 2001.

Suggested Readings:

1. R.P. Agarwal, “Difference Equations and Inequalities”, 2nd Edition, Marcel Dekker,
New York, 2000.

2. S.N. Elaydi, “An Introduction to Difference Equations”, 3rd Edition, Springer,
India, 2008.

3. R. E. Mickens, “Difference Equations”, 3rd Edition, CRC Press, 2015.
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Unit 1

The Difference Calculus

Objectives:

This unit briefly surveys the most important aspects of the difference calculus. It

deals with the difference operator and the computation of sums, introduces the con-

cept of generating function, and contains a proof of the important Euler summation

formula.

1.1 The Difference Operator

Definition 1.1.1. Let y(t) be a function of a real or complex variable t. The “difference

operator” ∆ is defined by

∆y(t) = y(t+ 1)− y(t).

We can take the domain of y to be a set of consecutive integers such as the natural

numbers N = {1, 2, · · · }.

Remark 1.1.2. The step size of one unit used in the definition is not really a restriction.

Consider a difference operation with a step size h > 0 say, z(s + h) − z(s). If we take

y(t) = z(th), then we have

z(s+ h)− z(s) = z(th+ h)− z(th)

= y(t+ 1)− y(t)

= ∆y(t).

When applying the difference operator to a function of two or more variables, a

subscript will be used to indicate which variable is to be shifted by one unit.
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For example,

∆tte
n = (t+ 1)en − ten = en,

while

∆nte
n = ten+1 − ten = ten(e− 1).

Remark 1.1.3. Higher order differences are defined by composing the difference operator

with itself. The second order difference is

∆2y(t) = ∆
(
∆y(t)

)
= ∆

(
y(t+ 1)− y(t)

)
=
(
y(t+ 2)− y(t+ 1)

)
− 2q

(
y(t+ 1)− y(t)

)
⇒ ∆2y(t) = y(t+ 2)− 2y(t+ 1) + y(t).

In general, the formula for the nth order difference is given by

∆ny(t) = y(t+ n)− ny(t+ n− 1) +
n(n− 1)

2!
y(t+ n− 2) + · · ·+ (−1)ny(t) (1.1)

=
n∑

k=0

(−1)k
(
n
k

)
y(t+ n− k).

Definition 1.1.4. The “shift operator” E is defined by

Ey(t) = y(t+ 1).

If I denotes the identity operator defined by

Iy(t) = y(t).

Then, we have

∆ = E − I.

Theorem 1.1.5. The following are some fundamental properties of ∆:

(a) ∆m(∆ny(t)) = ∆m+ny(t), for all positive integers m and n.

(b) ∆(y(t) + z(t)) = ∆y(t) + ∆z(t).

(c) ∆(Cy(t)) = C∆y(t), if C is a constant.

(d) ∆(y(t)z(t)) = y(t)∆z(t) + Ez(t)∆y(t).

(e) ∆y(t)
z(t)

= z(t)∆y(t)−y(t)∆z(t)
z(t)Ez(t)

.
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Proof. (a) For all positive integers m and n, we have

∆m(∆ny(t)) = (E − I)m
(
(E − I)ny(t)

)
= (E − I)m+ny(t)

= ∆m+ny(t).

(b) We have

∆(y(t) + z(t)) = (y(t+ 1) + z(t+ 1))− (y(t) + z(t))

= (y(t+ 1)− y(t)) + (z(t+ 1)− z(t))

= ∆y(t) + ∆z(t).

(c) For a constant C, we have

∆(Cy(t)) = Cy(t+ 1)− Cy(t)

= C(y(t+ 1)− y(t))

= C∆y(t).

(d) We have

∆(y(t)z(t)) = y(t+ 1)z(t+ 1)− y(t)z(t)

= y(t+ 1)z(t+ 1)− y(t)z(t+ 1) + y(t)z(t+ 1)− y(t)z(t)

= z(t+ 1)(y(t+ 1)− y(t)) + y(t)(z(t+ 1)− z(t))

= z(t+ 1)∆y(t) + y(t)∆z(t)

= Ez(t)∆y(t) + Ey(t)∆z(t).

(e) We have

∆

(
y(t)

z(t)

)
=

y(t+ 1)

z(t+ 1)
− y(t)

z(t)

=
y(t+ 1)z(t)− y(t)z(t+ 1)

z(t+ 1)z(t)

=
y(t+ 1)z(t)− y(t)z(t+ 1)− y(t)z(t) + y(t)z(t)

z(t)Ez(t)
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=
z(t)[y(t+ 1)− y(t)]− y(t)[z(t+ 1)− z(t)]

z(t)Ez(t)

=
z(t)∆y(t)− y(t)∆z(t)

z(t)Ez(t)
.

The following theorem give formulas for differences of some basic functions.

Theorem 1.1.6. Let “a” be a constant. Then

(a) ∆at = (a− 1)at.

(b) ∆sin at = 2 sin a
2
cos a

(
t+ 1

2

)
.

(c) ∆cos at = −2 sin a
2
sin a

(
t+ 1

2

)
.

(d) ∆ log at = log
(
1 + 1

t

)
.

(e) ∆ log Γ(t) = log t.

(Here log t represents any logarithm of the positive number t.)

Proof. (a) We have

∆at = at+1 − at = (a− 1)at.

(b) We have

∆sin at = sin a(t+ 1)− sin at

= 2 sin

(
a(t+ 1)− at

2

)
cos

(
a(t+ 1) + at

2

)
= 2 sin

a

2
cos

2at+ a

2

= 2 sin
a

2
cos a

(
t+

1

2

)
.

(c) We have

∆cos at = cos a(t+ 1)− cos at

= −2 sin

(
a(t+ 1)− at

2

)
sin

(
a(t+ 1) + at

2

)
= −2 sin

a

2
sin a

(
t+

1

2

)
.
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(d) We have

∆ log at = log a(t+ 1)− log at

= log(at+ a)− log at

= log

(
at+ a

at

)
= log

(
1 +

1

t

)
.

(e) We have

∆ log Γ(t) = log Γ(t+ 1)− log Γ(t)

= log
Γ(t+ 1)

Γ(t)

= log
tΓ(t)

Γ(t)

= log t.

Note: All the formulas in Theorem 1.1.6 remain valid if a constant shift is intro-

duced in the ’t’ variable.

For example:

∆at+k = at+k+1 − at+k = (a− 1)at+k.

Example 1.1.7. Compute ∆secπt.

First, let us compute ∆secπt using Theorem 1.1.5(e).

We know that ∆y(t)
z(t)

= z(t)∆y(t)−y(t)∆z(t)
z(t)Ez(t)

.

Then

∆secπt = ∆
1

cos πt

=
(cos πt)(∆1)− (1)(∆ cosπt)

cosπt cos π(t+ 1)

=
2 sin π

2
sin π(t+ 1

2
)

cos πt cosπ(t+ 1)
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=
2(sin πt cos π

2
+ cos πt sin π

2
)

cosπt(cos πt cos π − sin πt sinπ)

=
2 cosπt

(cosπt)(− cos πt)

= −2 secπt.

(b) Next, let us compute ∆secπt using the definition of ∆ .

∆secπt = sec π(t+ 1)− sec πt

=
1

cosπ(t+ 1)
− 1

cos πt

=
1

cosπt cos π − sin πt sin π
− 1

cosπt

=
1

− cosπt
− 1

cosπt

= −2 secπt.

Note:

∆tt
n = (t+ 1)n − tn

=
n∑

k=0

(−1)k
(
n
k

)
tk − tn

=
n−1∑
k=0

(−1)k
(
n
k

)
tk.

Definition 1.1.8. The “falling factorial power” tr is defined as follows, according to the

value of r.

(a) If r = 1, 2, 3, · · · then tr = t(t− 1)(t− 2) · · · (t− r + 1).

(b) If r = 0 then t0 = 1.

(c) If r = −1,−2,−3, · · · , then tr = 1
(t+1)(t+2)···(t−r)

.

(d) If r is not an integer, then

tr =
Γ(t+ 1)

Γ(t− r + 1)
.

Remark 1.1.9. It is understood that the definition of tr is given only for those values of t

and r that makes the formulas meaningful. For example, (−2)−3 is not defined since the

expression in part (c) involves division by zero and (1
2
)
3
2 is meaningless because Γ(0) is

undefined.
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Remark 1.1.10. If r is a positive integer, then

Γ(t+ 1)

Γ(t− r + 1)
=

tΓ(t)

Γ(t− r + 1)

=
t(t− 1)Γ(t− 1)

Γ(t− r + 1)

= · · · t(t− 1) · · · (t− r + 1)Γ(t− r + 1)

Γ(t− r + 1)

= t(t− 1) · · · (t− r + 1).

So (a) is a special case of (d). In a similar way, (b) and (c) are particular cases of (d).

Definition 1.1.11. The “binomial coefficient ”
(
t
r

)
is defined by(

t
r

)
=

tr

Γ(r + 1)
,

where t and r are positive integers with t ≥ r.

Theorem 1.1.12. (a) ∆tt
r = rtr−1.

(b) ∆t

(
t
r

)
=
(

t
r−1

)
, (r ̸= 0).

(c) ∆t

(
r+t
t

)
=
(
r+t
t+1

)
.

Proof. (a) Before we consider the general cases, let’s prove (a) for a positive integer r.

∆tt
r = (t+ 1)r − tr

= (t+ 1)(t)(t− 1) · · · (t− r + 2)− t(t− 1)(t− 2) · · · (t− r + 1)

= t(t− 1) · · · (t− r + 2)[(t+ 1) + (t− r + 1)]

= rtr−1.

Now, Let r be arbitrary. From (d) of Definition 1.1.8, we have

∆tt
r = ∆t

Γ(t+ 1)

Γ(t− r + 1)
=

Γ(t+ 2)

Γ(t− r + 2)
− Γ(t+ 1)

Γ(t− r + 1)

=
(t+ 1)Γ(t+ 1)

Γ(t− r + 2)
− (t− r + 1)Γ(t+ 1)

Γ(t− r + 2)
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=
Γ(t+ 1)

Γ(t− r + 2)
[(t+ 1)− (t− r + 1)]

=
Γ(t+ 1)

Γ(t− r + 2)
(r)

= rtr−1.

(b) We know that (
t
r

)
=

tr

Γ(r + 1)
.

Then

∆t

(
t
r

)
= ∆t(

tr

Γ(r + 1)
)

=
rtr−1

Γ(r + 1)

=
rtr−1

rΓ(r)

=
tr−1

Γ(r)

=

(
t

r − 1

)
.

(c) Consider

∆t

(
r + t
t

)
=

(
r + t+ 1
t+ 1

)
−
(
r + t
t

)

= ∆t

(
r + t+ 1− 1

t+ 1

)
+

(
r + t+ 1− 1
t+ 1− 1

)
−
(
r + t
t

)

=

(
r + t
t+ 1

)
.

Example 1.1.13. Find a solution to the difference equation

y(t+ 2)− 2y(t+ 1) + y(t) = t(t− 1).

The given difference equation can be written in the form,

∆2y(t) = t2.
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From Theorem 1.1.12, we know that ∆tt
r = rtr−1. Then

∆2t4 = ∆
(
∆t4
)

= ∆4t3

= 12t2.

So y(t) = t4

12
is a solution of the difference equation.

Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Difference operator and its properties

2. Relation between difference operator and shift operator

3. Difference of some elementary functions

4. Falling factorial power

Check your Progress:

1. The difference operator ∆ is defined by ∆y(t) = ————

(A) y(t+ 1) (B) y(t+ 1)− y(t) (C) y(t+ 1) + y(t) (D) None of these

2. The value of ∆tte
n is

(A) (t+ 1)en (B) en (C) en+1 (D) ten

3. The value of ∆at is

(A) (a− 1)at (B) at+1 (C) (a+ 1)at (D) at

1.2 Summation

Definition 1.2.1. An “indefinite sum" (or “antidifference") of y(t), denoted by
∑
y(t), is

any function so that

∆

(∑
y(t)

)
= y(t)

for all t in the domain of y.

15



Example 1.2.2. Compute the indefinite sum
∑

6t.

We know that ∆at = at(a− 1). Then

∆6t = 5 · 6t.

⇒ ∆
(6t
5

)
= 6t.

It follows that 6t

5
is an indefinite sum of 6t.

Let us find all other indefinite sums of 6t.

Let C(t) be a function with the same domain as 6t so that ∆C(t) = 0. Then

∆

(
6t

5
+ C(t)

)
= ∆

(
6t

5

)
+∆C(t) = 6t,

so 6t

5
+ C(t) is an indefinite sum of 6t.

Further, if f(t) is any indefinite sum of 6t, then

∆

(
f(t)− 6t

5

)
= ∆f(t)−∆

(6t
5

)
= 6t − 6t = 0,

so f(t) = 6t

5
+ C(t) for some C(t) with ∆C(t) = 0. It follows that we have found all

indefinite sums of 6t, and we write∑
6t =

6t

5
+ C(t),

where C(t) is any function with the same domain as 6t and ∆C(t) = 0.

Theorem 1.2.3. If z(t) is an indefinite sum of y(t), then every indefinite sum of y(t) is

given by ∑
y(t) = z(t) + C(t),

where C(t) has the same domain as y and ∆C(t) = 0.

Proof. Given that z(t) =
∑
y(t).

Let us assume that C(t) has the same domain as y(t) so that ∆C(t) = 0.

Then

∆
(
z(t) + C(t)

)
= ∆z(t) + ∆C(t)

= ∆z(t) + 0

= ∆
(∑

y(t)
)

= y(t).
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Thus z(t) + C(t) is an indefinite sum of y(t).

Further, if f(t) is any indefinite sum of y(t), then

∆
(
f(t)− z(t)

)
= ∆f(t)−∆z(t)

= y(t)− y(t)

= 0,

so f(t) = z(t) + C(t) with ∆C(t) = 0. Thus, every indefinite sum of y(t) is given by

∑
y(t) = z(t) + C(t),

where C(t) is any function with the same domain as y(t) and ∆C(t) = 0.

Corollary 1.2.4. Let y(t) be defined on a set of the type
{
a, a+ 1, a+ 2, · · ·

}
, where a is

any real number, and let z(t) be an indefinite sum of y(t). Then every indefinite sum of

y(t) is given by

∑
y(t) = z(t) + C,

where C is an arbitrary constant.

Theorem 1.2.5. Let ‘a’ be a constant. Then, for ∆C(t) = 0,

(a)
∑
at = at

a−1
+ C(t), (a ̸= 1).

(b)
∑

sin at = − cos a(t− 1
2
)

2 sin a
2

+ C(t), (a ̸= 2nπ).

(c)
∑

cos at = − sin a(t− 1
2
)

2 sin a
2

+ C(t), (a ̸= 2nπ).

(d)
∑

log t = log Γ(t) + C(t), (t > 0).

(e)
∑
ta = ta+1

a+1
+ C(t), (a ̸= −1).

(f)
∑(

t
a

)
=
(

t
a+1

)
+ C(t).

(g)
∑(

a+t
t

)
=
(
a+t
t−1

)
+ C(t).

Proof. (a) We know that

∆at = (a− 1)at.
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Then,

∆
( at

a− 1

)
= at.

Since at

a−1
is an indefinite sum of at, we can write,

∑
at =

at

a− 1
+ C(t),

with ∆C(t) = 0.

(b) We know that

∆cos aT = −2 sin
a

2
sin a

(
T +

1

2

)
.

Put T = t− 1
2
. Then,

∆cos a
(
t− 1

2

)
−2 sin a

2

= sin at.

Since
cos a
(
t− 1

2

)
−2 sin a

2
is an indefinite sum of sin at, we can write

∑
sin at = −

cos a(t− 1
2
)

2 sin a
2

+ C(t), (a ̸= 2nπ)

with ∆C(t) = 0.

(c) We know that

∆sin aT = 2 cos a
(
T +

1

2

)
sin

a

2
.

Put T = t− 1
2
. Then,

∆
sin a

(
t− 1

2

)
2 sin a

2

= cos at.

Since
sin a
(
t− 1

2

)
2 sin a

2
is an indefinite sum of cos at, we can write

∑
cos at = −

sin a(t− 1
2
)

2 sin a
2

+ C(t), (a ̸= 2nπ)

with ∆C(t) = 0.

(d) We know that

∆ log Γ(t) = log(t).
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Since log Γ(t) is an indefinite sum of log t, we can write

∑
log t = log Γ(t) + C(t), (t > 0)

with ∆C(t) = 0.

(e) We know that ∆tt
r = rtr−1.

Then,

∆ta+1 = (a+ 1)ta+1−1

=⇒ ∆
t(a+1)

a+ 1
= ta.

Since ta+1

a+1
is an indefinite sum of ta, we can write∑

ta =
ta+1

a+ 1
+ C(t), (a ̸= −1)

with ∆C(t) = 0.

(f) We know that ∆t

(
t
r

)
=
(

t
r−1

)
(r ̸= 0).

Then,

∆

(
t

a+ 1

)
=

(
t

a

)
.

Since
(

t
a+1

)
is an indefinite sum of

(
t
a

)
, we can write∑(

t

a

)
=

(
t

a+ 1

)
+ C(t),

with ∆C(t) = 0.

(g) We know that ∆t

(
r+t
t

)
=
(
r+t
t+1

)
.

Then,

∆

(
a+ t

t− 1

)
=

(
a+ t

t

)
.

Since
(
a+t
t−1

)
is an indefinite sum of

(
a+t
t

)
, we can write∑(

a+ t

t

)
=

(
a+ t

t− 1

)
+ C(t)

with ∆C(t) = 0.

Note: All the formulas in the above Theorem remain valid if a constant shift is

introduced in the ’t’ variable.
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Example 1.2.6. Find the solution of

y(t+ 2)− 2y(t+ 1) + y(t) = t2, (t = 0, 1, 2, ...),

so that y(0) = −1, y(1) = 3.

Since ∆2y(t) = t2, we have ∆(∆y(t)) = t2.

=⇒ ∆y(t) is an indefinite sum of t2.

Since
∑
ta = ta+1

a+1
+ C(t), we have

t3

3
+ C = ∆y(t),

and hence

y(t) =
∑ t3

3
+ C

∑
t0 +D

=
t4

12
+ Ct+D,

where C and D are constants. Using the values of y at t = 0 and t = 1, we get D = −1

and C = 4 , so the unique solution is

y(t) =
t4

12
+ 4t− 1.

Theorem 1.2.7. The following are some general properties of indefinite sums:

(a)
∑

(y(t) + z(t)) =
∑
y(t) +

∑
z(t).

(b)
∑
Dy(t) = D

∑
y(t) if D is constant.

(c)
∑

(y(t)∆z(t)) = y(t)z(t)−
∑
Ez(t)∆y(t).

(d)
∑

(Ey(t)∆z(t)) = y(t)z(t)−
∑
z(t)∆y(t).

Proof. (a) By the definition of indefinite sum,

∆
(∑

y(t) +
∑

z(t)
)

= ∆
(∑

y(t)
)
+∆

(∑
z(t)

)
= y(t) + z(t).

=⇒
∑(

y(t) + z(t)
)

=
∑

y(t) +
∑

z(t).
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(b) By the definition of indefinite sum,

∆
(
D
∑

y(t)
)

= D
(
∆
(∑

y(t)
))

= Dy(t).

=⇒
∑

Dy(t) = D
∑

y(t).

(c) We know that

∆(y(t)z(t)) = y(t)∆z(t) + Ez(t)∆y(t).

=⇒
∑(

y(t)∆z(t) + Ez(t)∆y(t)
)

= y(t)z(t)

=⇒
∑(

y(t)∆z(t)
)
+
∑(

Ez(t)∆y(t)
)

= y(t)z(t) [by (a)]

=⇒
∑(

y(t)∆z(t)
)

= y(t)z(t)−
∑(

Ez(t)∆y(t)
)
.

(d) We know that

∆
(
z(t)y(t)

)
= z(t)∆y(t) + Ey(t)∆z(t).

=⇒
∑(

z(t)∆y(t) + Ey(t)∆z(t)
)

= z(t)y(t)

=⇒
∑(

z(t)∆y(t)
)
+
∑(

Ey(t)∆z(t)
)

= z(t)y(t) [by (a)]

=⇒
∑(

Ey(t)∆z(t)
)

= y(t)z(t)−
∑

z(t)∆y(t).

Remark: Parts (c) and (d) of Theorem 1.2.7. are known as "summation by parts"

formula.

Example 1.2.8. Compute
∑
tat (a ̸= 1).

We know that

∑
(y(t)∆z(t)) = y(t)z(t)−

∑
(Ez(t)∆y(t)).
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If we choose y(t) = t and ∆z(t) = at, then we get z(t) = at

a−1
.

So, we have ∑
tat = t

( at

a− 1

)
−
∑ at+1

a− 1
∆t+ C(t)

=
tat

a− 1
− a

a− 1

∑
at + C(t)

=
tat

a− 1
− a

(a− 1)2
at + C(t),

where ∆C(t) = 0.

Example 1.2.9. Compute
∑(

t
5

)(
t
2

)
.

Consider the summation by parts formula∑
(y(t)∆z(t)) = y(t)z(t)−

∑
(Ez(t)∆y(t)).

By taking y(t) =
(
t
2

)
and ∆z(t) =

(
t
5

)
, we get z(t) =

(
t
6

)
, and hence∑(

t

5

)(
t

2

)
=

(
t

6

)(
t

2

)
−
∑(

t+ 1

6

)(
t

1

)
+ C(t).

Now, we applying summation by parts to the last sum with y1(t) =
(
t
1

)
,∆z1(t) =

(
t+1
6

)
,

and z1(t) =
(
t+1
7

)
, we have∑(

t

5

)(
t

2

)
=

(
t

6

)(
t

2

)
−
[(
t+ 1

7

)(
t

1

)
−
∑(

t+ 2

7

)]
+ C(t)

=

(
t

6

)(
t

2

)
−
(
t+ 1

7

)
+

(
t+ 2

8

)
+ C(t),

where ∆C(t) = 0.

Note:

For the remainder of this section, we will assume that the domain of y(t) is the

natural numbers N = {1, 2, 3, . . .}. Sequence notation will be used for the function

y(t) : That is,

y(t) ↔ {yn},

where n ∈ N. It will be convenient to use the convention
b∑

k=a

yk = 0
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whenever a > b.

Note:

Observe that for m fixed and n ≥ m,

∆n

(
n−1∑
k=m

yk

)
= yn,

and for p fixed and p ≥ n,

∆n

(
p∑

k=n

yk

)
= −yn.

Corollary 1.2.10. (Relation between definite and indefinite sums)

From the above note ∑
yn =

n−1∑
k=m

yk + C (m ≤ n) (1.2)

for some constant C and, alternatively, that∑
yn = −

p∑
k=n

yk +D (p ≥ n) (1.3)

for some constant D. Equations (1.2) and (1.3) give us a way of relating indefinite sums

to definite sums.

Example 1.2.11. Compute the definite sum
∑n−1

k=1(
2
3
)k.

By equation (1.2) and
∑
at = at

a−1
+ C(t), we have

n−1∑
k=1

(
2

3
)k =

∑
(
2

3
)n + C

=
(2
3

n
)

2
3
− 1

+ C

= −3(
2

3
)n + C, (n = 2, 3, ...).

To evaluate C, let n = 2. Then, we get

2

3
= −3(

2

3
)2 + C,

⇒ C = 2,

and so
n−1∑
k=1

(
2

3
)k = 2− 3(

2

3
)n (n = 2, 3, ...).
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Theorem 1.2.12. If zn is an indefinite sum of yn, then
n−1∑
k=m

yk = [zk]
n
m = zn − zm.

Proof. Since zn is an indefinite sum of yn, we have∑
yn = zn.

and

yn = ∆zn

= zn+1 − zn.

Therefore
n−1∑
k=m

yk =
n−1∑
k=m

(zk+1 − zk)

= zm+1 − zm + zm+2 − zm+1 + zm+3 − zm+2 + ........+ zn − zn−1

= zn − zm.

Example 1.2.13. Compute
l∑

k=1

k2.

Recall that k1 = k and k2 = k(k − 1).

Then k2 = k1 + k2, and so, ∑
k2 =

∑
k1 +

∑
k2

=
k2

2
+
k3

3
+ C

by Theorem 1.2.5(e). From Theorem 1.2.12, we have
l∑

k=1

k2 =

[
k2

2
+
k3

3

]l+1

1

=
(l + 1)2

2
+

(l + 1)3

3
− 12

2
− 13

3

=
(l + 1)l

2
+

(l + 1)l(l − 1)

3

=
(l + 1)l

2
+

(l + 1)l(l − 1)

3

=
l(l + 1)(2l + 1)

6
.
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The next theorem gives a version of the summation by parts method for definite

sums.

Theorem 1.2.14. If m < n, then

n−1∑
k=m

ak∆bk = [akbk]
n
m −

n−1∑
k=m

(∆ak) bk+1.

Proof. Choosing y(n) = an and z(n) = bn in Theorem 1.2.7(c), we have

∑
an∆bn = anbn −

∑
(∆an) bn+1.

From equation (1.2), we have

n−1∑
k=m

ak∆bk = anbn −
n−1∑
k=m

(∆ak) bk+1 + C.

With n = m+ 1, the preceding equation becomes

am∆bm = am+1bm+1 − (∆am) bm+1 + C.

It follows that C = −ambm, and the proof is complete.

Remark 1.2.15. An equivalent form of Theorem 1.2.14 is Abel’s summation formula:

n−1∑
k=m

ckdk = dn

n−1∑
k=m

ck −
n−1∑
k=m

(
k∑

i=m

ci

)
∆dk.

Example 1.2.16. Compute
∑n−1

k=1 k3
k.

By Theorem 1.2.14 with ak = k and ∆bk = 3k,

n−1∑
k=1

k3k =

[
k
3k

2

]n
1

−
n−1∑
k=1

3k+1

2
.

From Theorem 1.2.12 and Theorem 1.2.5(a),

n−1∑
k=1

3k =
3n − 3

2
.

Returning to our calculation, we have
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n−1∑
k=1

k3k =
n3n − 3

2
− 3

2

(
3n − 3

2

)
=

(2n− 3)3n + 3

4
.

Note: The methods used in Example 1.2.16. allow us to compute any definite sum

of sequences of the form p(n)an, p(n) sin an, p(n) cos an, and p(n)
(
n
a

)
, where p(n) is a

polynomial in n. However, we must have as many repetitions of summation by parts

as the degree of p.

There is a special method of summation that is based on Eq. (1.1) for the nth

difference of a function:

∆ny(0) =
n∑

k=0

(−1)k
(
n

k

)
y(n− k)

=
n∑

i=0

(−1)n−i

(
n

i

)
y(i),

where we have used the change of index i = n− k and the fact that(
n

n−i

)
=
(
n
i

)
. It follows that

n∑
i=0

(−1)i
(
n

i

)
y(i) = (−1)n∆ny(0). (1.4)

Example 1.2.17. Compute
∑n

i=0(−1)i
(
n
i

)(
i+a
m

)
.

Let y(i) =
(
i+a
m

)
in Eq. (1.4).

From Theorem 1.1.12(b), ∆n
(
i+a
m

)
=
(

i+a
m−n

)
.

Thus, by Eq. (1.4), we get

n∑
i=0

(−1)i
(
n

i

)(
i+ a

m

)
= (−1)n

(
a

m− n

)
. (1.5)

Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Definition of indefinite sum

2. Indefinite sum of some basic functions

3. General properties of indefinite sums
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4. Relation between indefinite sums and definite sums

5. Abel’s summation formula

Check your Progress:

1. For a constant a,
∑(

t
a

)
= ——–?

(A)
(
1+t
a−1

)
(B)

(
1+t
a+1

)
(C)

(
t

a+1

)
(D)

(
t

a−1

)
2. If C is a constant, then

∑
Cy(t) = ——–?

(A)
∑
y(t) (B) C

∑
y(t) (C)

∑
y(Ct) (D) None of these

3. If zn is an indefinite sum of yn, then
n−1∑
k=m

yk = ........?

(A) zn − zm (B) zn−1 − zm (C) yn − ym (D) yn−1 − ym

1.3 Generating Functions and Approximate Summation

In Section 1.2, we discussed a number of methods by which finite sums can be com-

puted. However, most sums, like most integrals, cannot be expressed in terms of the

elementary functions of calculus. There are functions such as y(t) = 1
t

that can be

integrated exactly, ∫ b

a

1

t
dt = log

b

a
, (b > a > 0),

but for which there is no elementary formula for the corresponding sum:

n∑
k=1

1

k
.

The main result of this section, called the Euler summation formula, will give us a

technique for approximating a sum if the corresponding integral can be computed. To

formulate this result, we will use a generating function, which is itself important in the

analysis of difference equations, and a family of special functions called the Bernoulli

polynomials.

Definition 1.3.1. Let {yk(t)} be a sequence of (possibly constant) functions.

27



(a) If there is a function g(t, x) so that

g(t, x) =
∞∑
k=0

yk(t)x
k

for all x in an open interval about zero, then g is called the "generating function" for

{yk(t)}.

(b) If there is a function h(t, x) so that

h(t, x) =
∞∑
k=0

yk(t)x
k

k!

for all x in an open interval about zero, then h is called the "exponential generating

function" for {yk(t)}.

Note that for each t, yk(t) is the kth coefficient in the power series for g(t, x) with

respect to x at x = 0.

Example 1.3.2. Let yk(t) = (f(t))k for some function f(t). Then

g(t, x) =
∞∑
k=0

(f(t))kxk

=
∞∑
k=0

(f(t)x)k

=
1

1− f(t)x
if |f(t)x| < 1.

=⇒ 1
1−f(t)x

is the generating function for the sequence {yk(t)}.

Next,
∂

∂x

(
1

1− f(t)x

)
=

∂

∂x

∞∑
k=0

(f(t))kxk

=⇒ f(t)

(1− f(t)x)2
=

∞∑
k=0

k(f(t))kxk−1

=⇒ xf(t)

(1− f(t)x)2
=

∞∑
k=0

k(f(t))kxk.

So, xf(t)
(1−f(t)x)2

is the generating function for the sequence
{
k(f(t))k

}
.

Definition 1.3.3. The "Bernoulli polynomials" Bk(t) are defined by the equation

xetx

ex − 1
=

∞∑
k=0

Bk(t)

k!
xk.

In other words, xetx

ex−1
is the exponential generating function for the sequence Bk(t).
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Definition 1.3.4. The "Bernoulli numbers" Bk are given by Bk = Bk(0), the value of the

kth Bernoulli polynomial at t = 0.

Remark 1.3.5. Compute the first four Bernoulli numbers.

Consider

xetx

ex − 1
=

∞∑
k=0

Bk(t)

k!
xk.

=⇒ etx =
ex − 1

x

∞∑
k=0

Bk(t)

k!
xk.

Then expanding the exponential functions on each side in their Taylor series about

zero and collecting terms containing the same power of x, we get

1 + tx+
t2x2

2!
+
t3x3

3!
+ · · ·

=

(
1 +

x

2!
+
x2

3!
+ · · ·

)(
B0(t) +

B1(t)

1!
x+

B2(t)

2!
x2 + · · ·

)
= B0(t) +

(
B1(t)

1!
+
B0(t)

2!

)
x+

(
B2(t)

2!
+
B1(t)

2!1!
+
B0(t)

3!

)
x2 + · · · .

Equating coefficients of like powers of x, we have

B0(t) = 1, B1(t) +
B0(t)

2
= t, B2(t)

2
+ B1(t)

2
+ B0(t)

6
= t2

2
· · · .

Thus, the first few Bernoulli polynomials are given by

B0(t) = 1, B1(t) = t− 1

2
, B2(t) = t2 − t+

1

6
, (1.6)

B3(t) = t3 − 3

2
t2 +

1

2
t, · · ·

Then, the first four Bernoulli numbers are given by

B0 = B0(0) = 1,

B1 = B1(0) =
−1

2
,

B2 = B2(0) =
1

6
,

B3 = B3(0) = 0.

∴ B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0. (1.7)
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Theorem 1.3.6. (Properties of Bernoulli polynomials)

(a) B′
k(t) = kBk−1(t), (k ≥ 1).

(b) ∆kBk(t) = ktk−1, (k ≥ 0).

(c) Bk = Bk(0) = Bk(1), (k ̸= 1).

(d) B2m+1 = 0, (m ≥ 1).

Proof. (a) We know that
xetx

ex − 1
=

∞∑
k=0

Bk(t)

k!
xk.

Differentiating with respect to t on both sides, we get

=⇒ x2etx

ex − 1
=

∞∑
k=0

B′
k(t)

k!
xk

=⇒ x
( ∞∑

k=0

Bk(t)

k!
xk
)

=
∞∑
k=0

B′
k(t)

k!
xk

=⇒
∞∑
k=0

Bk(t)

k!
xk+1 =

∞∑
k=0

B′
k(t)

k!
xk.

Now, making the change of index k → k − 1 in the left-hand sum, we get

∞∑
k=1

Bk−1(t)

(k − 1)!
xk =

∞∑
k=0

B′
k(t)

k!
xk.

Equating the coefficients of xk, we get

Bk−1(t)

(k − 1)!
=

B′
k(t)

k!

=⇒ B′
k(t) = kBk−1(t), k ≥ 1.

(b) Consider
xetx

ex − 1
=

∞∑
k=0

Bk(t)

k!
xk.
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Next, taking the difference of both sides, we get

∞∑
k=0

∆tBk(t)

k!
xk =

x

ex − 1
∆te

tx

=
x

ex − 1

(
e(t+1)x − etx

)
=

x

ex − 1
etx(ex − 1)

= xetx

= x

∞∑
k=0

tkxk

k!

=
∞∑
k=0

tkxk+1

k!

=
∞∑
k=1

tk−1xk

(k − 1)!
.

Equating the coefficients, we get

∆tBk(t)

k!
=

tk−1

(k − 1)!

=⇒ ∆tBk(t) = ktk−1, k ≥ 0.

(c) Consider

∆tBk(t) = ktk−1

=⇒ Bk(t+ 1)−Bk(t) = ktk−1.

Putting t = 0, we get

Bk(1)−Bk(0) = 0.

=⇒ Bk = Bk(0) = Bk(1), k ̸= 1.

Corollary 1.3.7. If k = 0, 1, 2, · · · , then

∑
tk =

1

k + 1
Bk+1(t) + C(t),

where ∆C(t) = 0.
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Proof. We know that

∆tBk(t) = ktk−1, k ≥ 0

=⇒
∑

ktk−1 = Bk(t) + C(t), where ∆C(t) = 0

=⇒
∑

k + 1tk = Bk+1(t) + C(t)

=⇒
∑

tk =
1

k + 1
Bk+1(t) + C(t).

Theorem 1.3.8. (Euler summation formula) Suppose that the 2mth derivative of

y(t), y(2m)(t), is continuous on [1, n] for some integers m ≥ 1 and n ≥ 2. Then

n∑
k=1

y(k) =

∫ n

1

y(t)dt+
y(n) + y(1)

2
+

m∑
i=1

B2i

(2i)!

[
y(2i−1)(n)− y(2i−1)(1)

]
− 1

(2m)!

∫ n

1

y(2m)(t)B2m(t− ⌊t⌋)dt,

where ⌊t⌋ = the greatest integer less than or equal to t (called the "floor function" or

the "greatest integer function").

Proof. We know that

B1(t) = t− 1

2
.

Then,

B1(t− ⌊t⌋) = t− ⌊t⌋ − 1

2
.

For each k,∫ k+1

k

B1(t− ⌊t⌋)y′(t)dt =

∫ k+1

k

(
t− ⌊t⌋ − 1

2

)
y′(t)dt

=

∫ k+1

k

(
t− k − 1

2

)
y′(t)dt

=

(
t− k − 1

2

)
y(t)

∣∣∣∣k+1

k

−
∫ k+1

k

y(t)dt

=
y(k + 1)

2
+
y(k)

2
−
∫ k+1

k

y(t)dt

=
y(k + 1) + y(k)

2
−
∫ k+1

k

y(t)dt.

That is, ∫ k+1

k

B1(t− ⌊t⌋)y′(t)dt = y(k + 1) + y(k)

2
−
∫ k+1

k

y(t)dt. (1.8)
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Similarly, for i = 1, 2, . . . , 2m− 1,∫ k+1

k

Bi(t− ⌊t⌋)y(i)(t)dt =

∫ k+1

k

Bi(t− k)y(i)(t)dt

= y(i)(t)
Bi+1(t− k)

i+ 1

∣∣∣∣k+1

k

−
∫ k+1

k

Bi+1(t− k)

i+ 1
y(i+1)(t)dt

=
Bi+1

i+ 1

{
y(i)(k + 1)− y(i)(k)

}
− 1

i+ 1

∫ k+1

k

Bi+1(t− ⌊t⌋)y(i+1)(t)dt. (1.9)

Summing equation (1.8) as k goes from 1 to n− 1, we have∫ n

1

B1(t− ⌊t⌋)y′(t)dt =
n−1∑
k=1

y(k) + y(k + 1)

2
−
∫ n

1

y(t)dt

=
y(1) + y(2)

2
+
y(2) + y(3)

2
+ . . .

+
y(n− 1) + y(n)

2
−
∫ n

1

y(t)dt.

=
y(1)

2
+ y(2) + y(3) + . . .+ y(n− 1)

+
y(n)

2
−
∫ n

1

y(t)dt

=

(
n∑

k=1

y(k)

)
−
(
y(1) + y(n)

2

)
−
∫ n

1

y(t)dt. (1.10)

Summing equation (1.9) as k goes from 1 to n− 1, we have

∫ n

1

Bi(t− ⌊t⌋)y(i)(t)dt =
Bi+1

i+ 1

n−1∑
k=1

[
y(i)(k + 1)− y(i)(k)

]
− 1

i+ 1

∫ n

1

Bi+1(t− ⌊t⌋)y(i+1)(t)dt

=
Bi+1

i+ 1

[
y(i)(2)− y(i)(1) + y(i)(3)− y(i)(2) + . . .+ y(i)(n)− y(i)(n− 1)

]
− 1

i+ 1

∫ n

1

Bi+1(t− ⌊t⌋)y(i+1)(t)dt

=
Bi+1

i+ 1

[
y(i)(n)− y(i)(1)

]
− 1

i+ 1

∫ n

1

Bi+1(t− ⌊t⌋)y(i+1)(t)dt. (1.11)
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Now from (1.10),
n∑

k=1

y(k)− 1

2
(y(1) + y(n))−

∫ n

1

y(t)dt

=

∫ n

1

B1(t− ⌊t⌋)y′(t)dt

=
B2

2
[y′(n)− y′(1)]− 1

2

∫ n

1

B2(t− ⌊t⌋)y(2)(t)dt (by (1.11))

=
B2

2
[y′(n)− y′(1)]− 1

2

{
B3

3
[y(2)(n)− y(2)(1)]− 1

3

∫ n

1

B3(t− ⌊t⌋)y(3)(t)dt
}

=
B2

2
[y′(n)− y′(1)] +

1

2.3

{
B4

4
[y(3)(n)− y(3)(1)]− 1

4

∫ n

1

B4(t− ⌊t⌋)y(4)(t)dt
}

=
m∑
i=1

B2i

(2i)!

[
y(2i−1)(n)− y(2i−1)(1)

]
− 1

(2m)!

∫ n

1

B2m(t− ⌊t⌋)y(2m)(t)dt.

Hence the proof.

Example 1.3.9. Approximate
∑n

k=1 k
1
2 .

Put y(t) = t
1
2 and m = 1 in the Euler summation formula. Then,

n∑
k=1

k1/2 =

∫ n

1

t1/2dt+
n1/2 + 1

2
+
B2

2!
[y′(n)− y′(1)]− 1

2!

∫ n

1

y′′(t)B2(t− ⌊t⌋)dt

=

∫ n

1

t1/2dt+
n1/2 + 1

2
+

1

12

[
1

2
n−1/2 − 1/2

]
− 1

2!

∫ n

1

(
−1

4
t−3/2

)
B2(t− ⌊t⌋)dt

=
2

3
n

3
2 +

n1/2

2
+

1

2
+

1

24
n

−1
2 − 1

24
+

1

8

∫ n

1

t
−3
2 B2(t− ⌊t⌋)dt

=
2

3
n

3
2 +

1

2
n

1
2 +

1

24
n

−1
2 − 5

24
+

1

8

∫ n

1

t−3/2B2(t− ⌊t⌋)dt. (1.12)

Now,

B2(x) = x2 − x+
1

6
=⇒ B′

2(x) = 2x− 1 and B′′
2 (x) = 2.

Then,

B′
2(x) = 0 =⇒ x =

1

2

=⇒ B′′
2

(
1

2

)
= 2 > 0.

=⇒ B2(x) has a minimum value at x = 1/2, and

B2

(
1
2

)
= 1

4
− 1

2
+ 1

6
= −1

12
.

∴ min B2(x) =
−1
12

.
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Also, B2(x) ≤ 1
6

for 0 ≤ x ≤ 1.

∴ − 1

12
≤ B2(x) ≤

1

6
for 0 ≤ x ≤ 1.

Since, 0 ≤ t− [t] < 1 ∀t, we have

1

8

∫ n

1

t−3/2

(
−1

12

)
dt ≤ 1

8

∫ n

1

t−3/2B2(t− ⌊t⌋)dt ⩽ 1

8

∫ n

1

t−3/2(1/6)dt

⇒ − 1

96

∫ n

1

t−3/2dt ≤ 1

8

∫ n

1

t−3/2B2(t− ⌊t⌋)dt ⩽ 1

48

∫ n

1

t−3/2dt

⇒ − 1

96

[
−2t−1/2

]n
1
≤ 1

8

∫ n

1

t−3/2B2(t− ⌊t⌋)dt ≤ 1

48

[
−2t−1/2

]n
1

⇒ − 1

48

[
1− n−1/2

]
≤ 1

8

∫ n

1

t−3/2B2(t− ⌊t⌋)dt ≤ 1

24

[
1− n−1/2

]
.

Thus, by (1.12), we have

2

3
n3/2 +

1

2
n1/2 +

1

24
n−1/2 − 5

24
− 1

48

(
1− n−1/2

)
≤

n∑
k=1

k1/2 ≤ 2

3
n3/2 +

1

2
n1/2 +

1

24
n−1/2 − 5

24
+

1

24

(
1− n−1/2

)
⇒ 2

3
n

3
2 +

1

2
n

1
2 +

1

16
n− 1

2 − 11

48
≤

n∑
k=1

k
1
2 ≤ 2

3
n

3
2 +

1

2
n

1
2 − 1

6
.

Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Generating functions

2. Bernoulli polynomials and Bernoulli numbers

3. Properties of Bernoulli polynomials

4. Euler summation formula

Check your Progress:

1. Bk
′(t) = —————–?

(A) kBk−1(t), (k ≥ 1) (B) Bk−1(t), (k ≥ 1)

(C) (k − 1)Bk(t), (k > 1) (D) None of these

2. Which of the following is not correct?
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(A) B0 = 1 (B) B2 = 1/6 (C) B5 = 0 (D) B11 = −1/2

3. For m ≥ 1, B2m+1 = ...........?

(A) 1 (B) −1 (C) 0 (D) −1/2

Unit Summary:

In this unit, the definition and properties of difference operator and its inverse op-

erator are provided. Also, Euler summation formula and its application are discussed.

By studying these concepts, one can observe the differences and similarities between

the difference and the differential calculus.

Glossary:

• ∆ -The difference operator

• ∆ny(t) -The nth order difference of y(t)

• E -The shift operator

• I -The identity operator

• tr -The “falling factorial power” (read “t to the r falling")

•
∑
y(t) - An “indefinite sum" (or “antidifference") of y(t)

• Bk(t) - Bernoulli polynomial

• Bk - Bernoulli number

• ⌊t⌋ - "floor function" or the "greatest integer function"

Self-Assessment Questions:

1. Show that ∆ and E commute-that is, ∆Ey(t) = E∆y(t) for all y(t).

2. Derive the formula

∆[x(t)y(t)z(t)] = ∆x(t)Ey(t)Ez(t) + x(t)∆y(t)Ez(t) + x(t)y(t)∆z(t)
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Write down five other formulas of this type.

3.Show that

(a) ∆at = (a− 1)at if a is a constant.

(b) ∆ect = (ec − 1) ect if c is a constant.

4. Show that

(a)
∑

cos at =
sin a(t− 1

2)
2 sin a

2
+ C(t) (a ̸= 2nπ).

(b)
∑(

a+t
t

)
=
(
a+t
t−1

)
+ C(t), where ∆C(t) = 0.

5. Let zn =
∑
yn. Show that

n−1∑
k=m

yk = zn − zm.

6. Prove that
∫ 1

0
Bk(t)dt = 0 for k ≥ 1.

Exercises:

1. Compute ∆(3t cos t) by two methods:

(a) Using Theorem 1.1.5.(d) and Theorem 1.1.6.(a) and (c).

(b) Directly from the definition of ∆.

2. Compute ∆nt3 and ∆nt3 for n = 1, 2, 3, · · · .

3. Find a solution of each of the following difference equations.

(a) y(t+ 1)− y(t) = t3 + 3t.

(b) y(t+ 2)− 2y(t+ 1) + y(t) =
(
t
5

)
.

4. Use summation by parts to compute
∑
t sin t.

5. Compute
8∑

k=1

1

(k + 1)(k + 2)(k + 3)

6. Give an estimate for
∑400

k=1 k
1
2 .

Answers for Check your Progress:

Section 1.1 1. (B) 2. (B) 3. (A)

Section 1.2 1. (C) 2. (B) 3. (A)

Section 1.3 1. (A) 2. (D) 3. (C)
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Unit 2

Linear Difference Equations

Objectives:

This unit deals with the basic theory for linear difference equations and the method

of solving them.

2.1 First Order Equations

Let p(t) and r(t) be given functions with p(t) ̸= 0 for all t. The first order linear

difference equation is

y(t+ 1)− p(t)y(t) = r(t). (2.1)

Equation (2.1) is said to be of first order because it involves the values of y at t and

t+ 1 only, as in the first order difference operator ∆y(t) = y(t+ 1)− y(t).

If p(t) = 1 for all t, then Eq. (2.1) is simply

∆y(t) = r(t),

and its solution is

y(t) =
∑

r(t) + C(t),

where ∆C(t) = 0.

Theorem 2.1.1. Let p(t) ̸= 0 and r(t) be given for t = a, a+ 1, · · · . Then

(a) The solutions of the homogeneous equation

u(t+ 1) = p(t)u(t) for t = a, a+ 1, · · · (2.2)
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are

u(t) = u(a)
t−1∏
s=a

p(s), (t = a+ 1, a+ 2, · · · ).

(b) All solutions of (2.1) are given by

y(t) = u(t)

[∑ r(t)

Eu(t)
+ C

]
,

where C is a constant and u(t) is any nonzero function from part (a).

Proof. (a) From the "homogeneous" equation (2.2)

u(t+ 1) = p(t)u(t) for t = a, a+ 1, · · · ,

we have

u(a+ 1) = p(a)u(a)

u(a+ 2) = p(a+ 1)p(a)u(a)

...

u(a+ n) = u(a)
n−1∏
k=0

p(a+ k).

Thus, we can write the solution as

u(t) = u(a)
t−1∏
s=a

p(s) (t = a, a+ 1, · · · ),

where it is understood that
∏a−1

s=a p(s) ≡ 1 and, for t ≥ a + 1, the product is taken

over a, a+ 1, · · · , t− 1.

(b) Putting y(t) = u(t)v(t) in equation (2.1), we get

u(t+ 1)v(t+ 1)− p(t)u(t)v(t) = r(t)

=⇒ u(t+ 1)v(t+ 1)− u(t+ 1)v(t) = r(t)

=⇒ ∆v(t) =
r(t)

Eu(t)
.

=⇒ v(t) =
∑ r(t)

Eu(t)
+ C.
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Thus, the solution of (2.1) is

y(t) = u(t)v(t) = u(t)

[∑ r(t)

Eu(t)
+ C

]
,

where C is an arbitrary constant and u(t) is any nontrivial solution of equation (2.2).

Remark 2.1.2. The method we used to solve (2.1) is a special case of the method of

"variation of parameters".

Example 2.1.3. Find the solution y(t) of

y(t+ 1)− ty(t) = y(t+ 1)!, (t = 1, 2, · · · ),

so that y(1) = 5.

By the previous theorem, the solution of the homogenous equation u(t+1)− tu(t) = 0

is given by

u(t) = u(1)
t−1∏
s=1

s = u(1)(t− 1)!.

We can take u(1)=1.

Then, the solution of the non-homogenous equation is given by

y(t) = u(t)
(∑ r(t)

Eu(t)
+ C

)
= (t− 1)!

[∑ (t+ 1)!

t!
+ C

]

= (t− 1)!

[∑
(t+ 1) + C

]
.

We know that
∑
tk = 1

k+1
Bk+1(t) + C(t), where ∆C(t) = 0.

Then

y(t) = (t− 1)!

[
B2(t+ 1)

2
+ C

]
.

Using B2(t) = t2 − t+ 1
6
, we have
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y(t) = (t− 1)!

[
t(t+ 1) + 1

6

2
+ C

]

=
(t+ 1!)

2
+

(t− 1!)

12
+ C(t− 1)!

=
(t+ 1!)

2
+D(t− 1)!.

To find D, take t = 1.

Then

y(t) = 5 ⇒ 1 +D = 5 ⇒ D = 4.

Thus, the solution of the given non-homogeneous equation is

y(t) =
(t+ 1)!

2
+ 4(t− 1)!, (t = 1, 2, · · · ).

Example 2.1.4. Suppose we deposit $2000 at the beginning of each year in an IRA that

pays an annual interest rate of 8%. How much will we have in the IRA at the end of the

tth year?

Let y(t) be the amount of money in the IRA at the end of the tth year. Then

y(t+ 1) = y(t) + (y(t) + 2000)(0.08) + 2000

= 1.08y(t) + 2160.

A solution of the homogeneous equation u(t+ 1) = 1.08u(t) is u(t) = (1.08)t. Then

y(t) = (1.08)t

[∑ 2160

(1.08)t+1
+ C

]

= (1.08)t

[
2160

1.08

∑(
1

1.08

)t

+ C

]
.

We know that
∑
at = at

a−1
.

Then

y(t) = (1.08)t

[
2160

1.08

( (
1

1.08

)t
1

1.08
− 1

)
+ C

]

= −27000 + C(1.08)t.

Since y(0) = 0, we have C = 27, 000, so that

y(t) = 27000
[
(1.08)t − 1

]
.

44



For example, at the end of twenty years, we would have

y(20) = 27, 000
[
(1.08)20 − 1

]
≈ $98, 845.84.

Example 2.1.5. Find the solution y(t) of

y(t+ 1)− ty(t) = 1, (t = 1, 2, · · · ),

so that y(1) = 1− e.

First, note that the solutions of u(t+ 1)− tu(t) = 0 are

u(t) = u(1)
t−1∏
s=1

s = u(1)(t− 1)!.

We can take u(t) = 1. Then

y(t) = (t− 1)!

[∑ 1

t!
+ C

]
.

We know that
∑
yn =

∑n−1
k=m yk + C. Then

y(t) = (t− 1)!

[
t−1∑
k=1

1

k!
+ C

]
.

To evaluate C, let t = 1. Then, we get

y(1) = (1− 1)!

[
1−1∑
k=1

1

k!
+ C

]
⇒ C = 1− e.

Therefore, the exact solution is given by

y(t) = (t− 1)!

[
1− e+

t−1∑
k=1

1

k!

]
.

Alternate Method I

Now, consider

y(t+ 1)− p(t)y(t) = r(t) (2.3)

and

u(t+ 1) = p(t)u(t). (2.4)
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Let us solve the above equation (2.3) and (2.4) for t in a discrete or continuous domain.

For simplicity, we assume p(t) > 0.

Applying the natural logarithm to both sides of equation (2.4), we get

log |u(t+ 1)| = log |u(t)|+ log p(t),

=⇒ ∆ log |u(t)| = log p(t),

=⇒ log |u(t)| =
∑

log p(t) +D(t),

where ∆D(t) = 0.

Then

|u(t)| = eD(t)e
∑

log p(t),

=⇒ u(t) = C(t)e
∑

log p(t),

where ∆C(t) = 0.

Once u(t) is found, the solution y(t) of equation (2.3) can be computed using

Theorem 2.1.1(b) with the constant C replaced by an arbitrary function C(t) so that

∆C(t) = 0.

Example 2.1.6. Solve the equation

u(t+ 1) = a
(t− r1)(t− r2) · · · (t− rn)

(t− s1)(t− s2) · · · (t− sm)
u(t),

where a, r1, r2, · · · , rn, s1, s2, · · · , sm are constants.

Assume that all factors in the preceding expression are positive. Then

u(t+ 1) = a
(t− r1)(t− r2) · · · (t− rn)

(t− s1)(t− s2) · · · (t− sm)
u(t).

Taking log on both sides, we get

log(u(t+ 1)) = log

[
a
(t− r1)(t− r2) · · · (t− rn)

(t− s1)(t− s2) · · · (t− sm)
u(t)

]

=⇒ log(u(t+ 1)) = log

[
a
(t− r1)(t− r2) · · · (t− rn)

(t− s1)(t− s2) · · · (t− sm)

]
+ log u(t)
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=⇒ log(u(t+ 1))− log u(t) = log

[
a
(t− r1)(t− r2) · · · (t− rn)

(t− s1)(t− s2) · · · (t− sm)

]

=⇒ ∆ log u(t) = log

[
a
(t− r1)(t− r2) · · · (t− rn)

(t− s1)(t− s2) · · · (t− sm)

]
.

The solution is

log u(t) =
∑

log

[
a
(t− r1)(t− r2) · · · (t− rn)

(t− s1)(t− s2) · · · (t− sm)

]
+D(t),

where D(t) = 0.

Then

log u(t) =
∑[

log a+ log(t− r1) + · · ·+ log(t− rn)− log(t− s1)− · · ·

− log(t− sm)
]
+D(t)

=⇒ u(t) = eD(t)e
∑[

log a+log(t−r1)+···+log(t−rn)−log(t−s1)−···−log(t−sm)
]
.

We know that
∑

log t = log Γ(t) + C(t).

Then

u(t) = C(t)e

[
t log a+log Γ(t−r1)+···+log Γ(t−rn)−Γ log(t−s1)−···−Γ log(t−sm)

]
=⇒ u(t) = C(t)at

Γ(t− r1) · · ·Γ(t− rn)

Γ(t− s1) · · ·Γ(t− sm)
,

where ∆C(t) = 0.

By direct substitution, we can show that this expression for u(t) = 0 solves the

difference equation for all values of t where the various gamma functions are defined.

We can conclude that equation (2.2) is solvable in terms of gamma functions if p(t) is a

rational function.

Example 2.1.7. Consider

u(t+ 1) =
t

2t2 + 3t+ 1
u(t).

The coefficient function factors as follows:

t

2t2 + 3t+ 1
u(t) =

1

2

t

(t+ 1)(t+ 1
2
)
.
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∴ By Example 2.1.6, we have

u(t) = C(t)
(1
2

)t Γ(t)

Γ(t+ 1)Γ(t+ 1
2
)

= C(t)
(1
2

)t 1

tΓ(t+ 1
2
)
.

Alternate Method II

Let’s rewrite equation (2.1) in the fractional form

y(t) =
−r(t) + y(t+ 1)

p(t)
. (2.5)

Then

y(t+ 1) =
−r(t+ 1) + y(t+ 2)

p(t+ 1)
. (2.6)

Substituting (2.6) in (2.5), we get

y(t) =
−r(t) + −r(t+1)+y(t+2)

p(t+1)

p(t)
.

Continuing in this way, we obtain the continued fraction

y(t) =
−r(t) +

−r(t+1)+
−r(t+2)+

−r(t+3)+···
p(t+3)

p(t+2)

p(t+1)

p(t)
.

If we formally divide out the continued fraction, we arrive at the infinite series

y(t) =
−r(t)
p(t)

+
−r(t+ 1)

p(t)p(t+ 1)
+ · · · ,

or

y(t) =
∞∑
k=0

−r(t+ k)

p(t) · · · p(t+ k)
. (2.7)

When this series converges, its sum must be a solution of equation (2.1).

Example 2.1.8. Consider the equation

y(t+ 1)− ty(t) = −3t.

By equation (2.7), we have

y(t) =
∞∑
k=0

3t+k

t(t+ 1) · · · (t+ k)
=

3t

t

∞∑
k=0

3tt−k,

a “factorial series.” The ratio test shows that this converges for all t ̸= 0,−1,−2, · · · , so

the series represents one solution of the difference equation.
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Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Solution of first order homogeneous equations

2. Solution of first order nonhomogeneous equations

Check your Progress:

1. A solution of the first order linear difference equation ∆y(t) = r(t) is ..........?

(A) y(t) = r(t) (B) y(t) =
∑
r(t) (C)

∑
y(t) = r(t) (D) None of these

2. u(t) = u(a)
∏t−1

s=a p(s) is a solution of the equation ...........

(A) u(t) = p(t)u(t+ 1) (B) u(t+ 1) = p(t)u(t)

(C) u(t+ a) = p(t) (D) None of these

3. If ∆ log |u(t)| = log p(t), then

(A) log |u(t)| = log p(t) (B) log u(t+ 1) =
∑

log p(t)

(C) log |u(t)| =
∑

log p(t) (D) None of these

2.2 General Results for Linear Equations

The linear equation of the nth order is

pn(t)y(t+ n) + · · ·+ p0(t)y(t) = r(t), (2.8)

where p0(t), · · · , pn(t) and r(t) are assumed to be known and p0(t) ̸= 0, pn(t) ̸= 0 for

all t. If r(t) ̸≡ 0, we say that (2.8) is "nonhomogeneous." As in last section, we will

study (2.8) in association with the corresponding homogeneous equation

pn(t)u(t+ n) + · · ·+ p0(t)u(t) = 0. (2.9)

Note that (2.8) can also be written using the shift operator as

(
pn(t)E

n + · · ·+ p0(t)E
0
)
y(t) = r(t),
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where E0 = I. Since E = ∆ + I, it is also possible to write (2.8) in terms of

the difference operator. However, the following example shows that the order of the

equation is not apparent in that case.

Example 2.2.1. What is the order of the equation

∆3y(t) + 3∆2y(t) + ∆y(t)− y(t) = r(t)?

Put ∆ = E − I and expand the power of ∆:

=⇒ (E − I)3y(t) + 3(E − I)2y(t) + (E − I)y(t)− y(t) = r(t)

⇒
(
E3 − 3E2 + 3E − I

)
y(t) + 3

(
E2 − 2E + I

)
y(t)

+ (E − I) y(t)− y(t) = r(t)

⇒ E3y(t)− 2Ey(t) = r(t)

or

y(t+ 3)− 2y(t+ 1) = r(t).

∴ The order of the given difference equation is

(t+ 3)− (t+ 1) = 2.

Theorem 2.2.2. Assume that p0(t), · · · , pn(t), and r(t) are defined for t = a, a+ 1, · · ·

and p0(t) ̸= 0, pn(t) ̸= 0 for all t. Then for any t0 in {a, a + 1, · · · } and any num-

bers y0, · · · , yn−1, there is exactly one y(t) that satisfies (2.8) for t = a, a + 1, · · · and

y (t0 + k) = yk for k = 0, · · · , n− 1.

Proof. The proof follows from iteration. For example,

y (t0 + n) =
r (t0)− pn−1 (t0) yn−1 − · · · − p0 (t0) y0

pn (t0)

since pn (t0) ̸= 0. Similarly, we can solve (2.8) for y(t) when t > t0 + n in terms of

the n preceding values of y. Since p0(t) is never 0 , we can also solve for y(t) when

t < t0.
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Theorem 2.2.3. (a) If u1(t) and u2(t) solve (2.9) , then so does Cu1(t) +Du2(t) for any

constants C and D.

(b) If u(t) solves (2.9) and y(t) solves (2.8) , then u(t) + y(t) solves (2.8) .

(c) If y1(t) and y2(t) solve (2.8) , then y1(t)− y2(t) solves (2.9) .

Proof. (a) By our assumption, we have

pn(t)u1(t+ n) + · · ·+ p0(t)u1(t) = 0 (2.10)

and

pn(t)u2(t+ n) + pn−1u2(t+ n− 1) + · · ·+ p0(t)u2(t) = 0. (2.11)

Multiply equation (2.10) by the constant C to obtain

C (pn(t)u1(t+ n) + · · ·+ p0(t)u1(t)) = 0.

Multiply equation (2.11) by the constant D to obtain

D (pn(t)u2(t+ n) + · · ·+ p0(t)u2(t)) = 0.

Adding the above two equations, we have

Cpn(t)u1(t+ n) + · · ·+ Cp0(t)u1(t) +Dpn(t)u2(t+ n) +

· · ·+Dp0(t)u2(t) = 0

=⇒ pn(t) (Cu1(t+ n) +Du2(t+ n)) + · · ·+ p0(t) (Cu1(t) +Du2(t)) = 0.

This can be rewritten as

pn(t)u(t+ n) + · · ·+ p0(t)u(t) = 0, (2.12)

where u(t) = Cu1(t) +Du2(t).

That is, Cu1(t) +Du2(t) satisfies equation (2.12)

∴ Cu1(t) +Du2(t) is a solution of equation (2.12).
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(b) By our assumption, we have

pn(t)u(t+ n) + · · ·+ p0(t)u(t) = 0

and

pn(t)y(t+ n) + · · ·+ p0(t)y(t) = r(t).

Adding the above two equations, we get

pn(t)u(t+ n) + · · ·+ p0(t)u(t) + pn(t)y(t+ n) + · · ·+ p0(t)y(t) = r(t)

=⇒ pn(t) (u(t+ n) + y(t+ n)) + · · ·+ p0(t) (u(t) + y(t)) = r(t).

This can be rewritten as

pn(t)Y (t+ n) + · · ·+ p0(t)Y (t) = r(t), (2.13)

where Y (t) = u(t)y(t).

That is, u(t)y(t) satisfies equation (2.13).

∴ u(t)y(t) is a solution of equation (2.13).

(c) By our assumption, we have

pn(t)y1(t+ n) + · · ·+ p0(t)y1(t) = r(t)

and

pn(t)y2(t+ n) + · · ·+ p0(t)y2(t) = r(t).

Subtracting the above two equations, we get

pn(t) (y1(t+ n)− y2(t+ n)) + · · ·+ p0(t) (y1(t)− y2(t)) = 0.

This can be rewritten as

pn(t)u(t+ n) + · · ·+ p0(t)u(t) = 0, (2.14)

where u(t) = y1(t)− y2(t).

That is y1(t)− y2(t) satisfies equation (2.14).

∴ y1(t)− y2(t) is a solution of equation (2.14).
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Corollary 2.2.4. If z(t) is a solution of (2.8), then every solution y(t) of (2.8) takes the

form

y(t) = z(t) + u(t),

where u(t) is some solution of Eq. (2.9).

Proof. This is just a restatement of Theorem 2.2.3 (c).

Remark 2.2.5. As a result of Corollary (2.2.4) the problem of finding all solutions of Eq.

(2.8) reduces to two smaller problems:

(a) Find all solutions of Eq. (2.9).

(b) Find one solution of Eq. (2.8).

This simplification is identical to that for linear differential equations. To analyze

the first problem, we need some definitions.

Definition 2.2.6. The set of functions {u1(t), · · · , um(t)} is "linearly dependent" on the

set t = a, a+ 1, · · · if there are constants C1, · · · , Cm, not all zero, so that

C1u1(t) + C2u2(t) + · · ·+ Cmum(t) = 0

for t = a, a+ 1, · · · . Otherwise, the set is said to be "linearly independent."

Example 2.2.7. Show that the functions 2t, t2t and t22t are linearly independent on every

set t = a, a+ 1, . . . , .

Suppose that there are constants C1,C2,C3 such that

C12t+ C2t2
t + C3t

22 = 0, t = a, a+ 1, · · ·

⇒ C1 + C2t+ C3t
2 = 0, t = a, a+ 1, · · ·

This is possible only if C1 = C2 = C3 = 0.

Therefore, 2t, t2t, t22tare linearly Independent on {a, a+ 1, . . .}.

Example 2.2.8. Show that the functions u1(t) = 2, u2(t) = 1 + cos πt are linearly inde-

pendent on the set t = 1, 2, 3, . . . .

Suppose that

C1u1(t) + C2u1(t) = 0

=⇒ 2C1 + C2(1 + cos πt) = 0

=⇒ 2C1 + C2 + C2 cos πt = 0, t = 1, 2, 3, . . . .
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When t = 1, 2C1 = 0,⇒ C1 = 0.

When t = 2, 2C1 + 2C2 = 0,⇒ C2 = 0.

∴ u1 and u2 are linearly independent on{1, 2, 3, . . .}.

Example 2.2.9. Suppose that u1(t) = 2, u2(t) = 1 + cos πt are linearly dependent on{
1
2
, 3
2
, 5
2
, · · ·

}
.

Note that

u1(t)− 2u2(t) = 2− 2(1 + cos πt)

= 0

for t = 1
2
, 3
2
, 5
2
, · · · .

=⇒ u1(t) = 2u2(t) for t = 1
2
, 3
2
. . ..

∴ u1 and u2-are linearly dependent on
{

1
2
, 3
2
, . . . .

}
.

Definition 2.2.10. The matrix of Casorati is given by

W (t) =


u1(t) u2(t) · · · un(t)

u1(t+ 1) u2(t+ 1) · · · un(t+ 1)
...

... . . . ...
u1(t+ n− 1) · · · · · · un(t+ n− 1)

 ,
where u1, · · · , un are given functions. The determinant

w(t) = detW (t)

is called the "Casoratian."

It is easy to check that the Casoratian satisfies the equation

w(t) = det


u1(t) u2(t) · · · un(t)
∆u1(t) ∆u2(t) · · · ∆un(t)

...
... . . . ...

∆n−1u1(t) · · · · · · ∆n−1un(t)

 . (2.15)

Theorem 2.2.11. Let u1(t), · · · , un(t) be solutions of (2.9) for t = a, a+ 1, · · · . Then the

following statements are equivalent:

(a) The set {u1(t), · · · , un(t)} is linearly dependent for t = a, a+ 1, · · · .

(b) w(t) = 0 for some t.

(c) w(t) = 0 for all t.
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Proof. First suppose that u1(t), u2(t), · · · , un(t) are linearly dependent. Then there are

constants C1, C2, · · · , Cn, not all zero, so that

C1u1(t) + C2u2(t) + · · ·+ Cnun(t) = 0,

C1u1(t+ 1) + C2u2(t+ 1) + · · ·+ Cnun(t+ 1) = 0,

...

C1u1(t+ n− 1) + C2u2(t+ n− 1) + · · ·+ Cnun(t+ n− 1) = 0,

for t = a, a+ 1, · · · .

Since this homogeneous system has a nontrivial solution C1, C2, · · · , Cn, the determi-

nant of the matrix of coefficients w(t) is zero for t = a, a+ 1, · · · .

Conversely, suppose that w (t0) = 0. Then there are constants C1, C2, · · · , Cn, not

all zero, so that

C1u1 (t0) + C2u2 (t0) + · · ·+ Cnun (t0) = 0,

C1u1 (t0 + 1) + C2u2 (t0 + 1) + · · ·+ Cnun (t0 + 1) = 0,

...

C1u1 (t0 + n− 1) + C2u2 (t0 + n− 1) + · · ·+ Cnun (t0 + n− 1) = 0.

Let

u(t) = C1u1(t) + C2u2(t) + · · ·+ Cnun(t).

Then u is a solution of Eq. (2.9) and

u (t0) = u (t0 + 1) = · · · = u (t0 + n− 1) = 0.

It follows immediately from Theorem 2.2.2 that u(t) = 0 for all t, hence the set

{u1, u2, · · · , un} is linearly dependent.

The importance of the linear independence of solutions to (2.9) is a consequence

of the next theorem.

Theorem 2.2.12. If u1(t), · · · , un(t) are independent solutions of (2.9), then every solu-

tion u(t) of (2.9) can be written in the form

u(t) = C1u1(t) + · · ·+ Cnun(t)

for some constants C1, · · · , Cn.
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Proof. Let u(t) be a solution of (2.9). Since w(t) ̸= 0 for t = a, a+ 1, · · · , the system of

equations

C1u1(a) + · · ·+ Cnun(a) = u(a),

...

C1u1(a+ n− 1) + · · ·+ Cnun(a+ n− 1) = u(a+ n− 1)

has a unique solution C1, · · · , Cn. Recall that a solution of (2.9) is uniquely determined

by its values at t = a, a+ 1, · · · , a+ n− 1, so we must have

u(t) = C1u1(t) + · · ·+ Cnun(t),

for all t.

Example 2.2.13. The equation

u(t+ 3)− 6u(t+ 2) + 11u(t+ 1)− 6u(t) = 0

has solutions 2t, 3t, 1 for all values of t. Their Casoratian is from Eq. (2.15)

w(t) = det

 2t 3t 1
2t 2 · 3t 0
2t 4 · 3t 0

 = 2t+13t,

which does not vanish. Consequently, the set {2t, 3t, 1} is linearly independent, and all

solutions of the equation have the form

u(t) = C12
t + C23

t + C3.

Let Us Sum Up:

In this section, we have discussed the following concepts:

1. nth order initial value problem

2. Linearly independent solutions

3. Matrix of Casorati

4. Role of Casoratian
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Check your Progress:

1. What is the order of the equation ∆3y(t) + ∆2y(t)−∆y(t)− y(t) = 0?

(A) 0 (B) 1 (C) 2 (D) 3

2. The operator form of the difference equation y(t+ 2)− 7y(t+ 1) + 6y(t) = t is

(A) (E − 1)(E − 6)y(t) = t (B) (E + 1)(E + 6)y(t) = t

(C) (E + 1)(E − 6)y(t) = t (D) (E − 1)(E + 6)y(t) = t

3. The Casoratian of the functions 2t, 3t, 1 is

(A) 2t3t+1 (B) 2t3t (C) 2t
2
3t (D) 2t+13t

2.3 Solving Linear Equations

In this section, we are going to find the n linearly independent solutions of the homo-

geneous equations pnu(t+n)+pn−1u(t+n−1)+ · · ·+p0u(t) = 0, where p0, p1, . . . , pn−1

are constants.

Since pn ̸= 0, we can divide the above equation by pn are relabel the resulting

equation to obtain.

u(t+ n) + pn−1u(t+ n− 1) + · · ·+ p0u(t) = 0, (2.16)

where p0, p1, . . . , pn−1 are constants and p0 ̸= 0.

Definition 2.3.1. (a) The polynomial λn+ pn−1λ
n−1+ · · ·+ p0 is called the "character-

istic polynomial" for (2.16).

(b) The equation λn + · · ·+ p0 = 0 is the "characteristic equation" for (2.16).

(c) The solutions λ1, · · · , λk of the characteristic equation are the "characteristic roots."

Theorem 2.3.2. Suppose that (2.16) has characteristic roots λ1, · · · , λk with multiplici-

ties α1, · · · , αk, respectively. Then (2.16) has the n independent solutions

λt1, · · · , tα1−1λt1, λ
t
2, · · · , tα2−1λt2, · · · , λtk, · · · , tαk−1λtk.
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Proof. Consider u(t+ n) + pn−1u(t+ n− 1) + · · ·+ p0u(t) = 0.

Using shift operator E, it can be written as

(
En + pn−1E

n−1 + · · ·+ p0
)
u(t) = 0.

(i.e) (E − λ1)
α1 (E − λ2)

α2 . . . (E − λk)
αk u(t) = 0. (2.17)

Since p0 ̸= 0, each characteristic root is non-zero.

Let us solve the equation

(E − λ1)
α1 u(t) = 0. (2.18)

∴ If α1 = 1, then (2.18) becomes

(E − λ1)u(t) = 0.

(i.e)u(t+ 1)− λ1u(t) = 0.

It’s solution is u(t) = λt1, if u(1) = λ1.

If α1 > 1, let u(t) = λt1v(t) in (2.18).

Then (E − λ1)
α1 λtv(t) =

α1∑
i=0

(
α1

i

)
(−λ1)α1−iEiλt1v(t)

=

α1∑
i=0

(
α1

i

)
· (−λ1)α1−i λt+i

1 Eiv(t)

= xα1+t
1

α1∑
i=0

(
α1

i

)
(−1)α1−iEiv(t)

= λα1+t
1 · (E − 1)α1v(t)

= λα1+t
1 ∆α1v(t)

= 0 if v(t) = 1, t, t2, . . . , tα1−1.

Thus (2.16) has α1 solutions of the form λt1, tλ
t
1, t

2λt1, . . . , t
α1−1λt1.

Example 2.3.3. Find all the solutions of

u(t+ 3)− 7u(t+ 2) + 16u(t+ 1)− 12u(t) = 0, t = a, a+ 1, . . . . (2.19)

The characterise equation is

λ3 − 7λ2 + 16λ− 12 = 0.

(λ− 2)2(λ− 3) = 0.
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∴ The three independent solutions of (2.19) are

u1(t) = 2t, u2(t) = t2t, u3(t) = 3t.

Let’s verify independence:

w(t) =

∣∣∣∣∣∣
2t t2t 3t

2t+1 (t+ 1)2t+1 3t+1

2t+ 2 (t+ 2)2t+2 3t+2

∣∣∣∣∣∣
= 2t2t3t

∣∣∣∣∣∣
1 t 1
2 2(t+ 1) 3
4 4(t+ 2) 9

∣∣∣∣∣∣
= 22t3t{(18t+ 18− 12t− 24)− t(18− 12) + (8t+ 16− 8t− 8)

= 22t3t
{
bE − b− 6b+ 8

}
= 22t+13t

w(t) ̸= 0.

∴ The general solutions of the difference equation is

u(t) = C12
t + C2t2

t + C33
t, where C1, C2 and C3

are arbitrary constants.

Example 2.3.4. Find independent real solutions of

u(t+ 2)− 2u(t+ 1) + 4u(t) = 0. (2.20)

The characteristic equation is λ2 − 2λ+ 4 = 0.

=⇒ λ =
2±

√
4− 16

2
=

2± i
√
12

2

=⇒ λ = 1± i
√
3

=⇒ λ = re±iθ = r(cos θ ± i sin θ) = 2
(
cos

π

3
± i sin

π

3

)
∴ λt = 2t

(
cos

π

3
t± i sin

π

3
t
)
.

∴ The two real solutions are

u1(t) = 2t cos
π

3
t, u2(t) = 2t sin

π

3
t.
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Now, ω(t) =

∣∣∣∣ 2t cos π
3
t 2t sin π

3
t

2t+1 cos π
3
(t+ 1) 2(t) sin π

3
(t+ 1)

∣∣∣∣
= 22t+1

[
sin

π

3
(t+ r) cos

π

3
t− cos

π

3
(t+ 1) sin

π

3
t
]

= 22t+1 sin
[π
3
(t+ 1)− π

3
t
]

= 22t+1

√
3

2
̸= 0.

∴ u1 and u2 are the independent real solutions of (2.20).

Annihilator Method:

The general non-homogeneous equation with constant coefficients.

y(t+ n) + pn−1y(t+ n− 1) + . . .+ p0y(t) = r(t)

can be solved by "annihilator method" if r(t) is a solution of some homogenous equa-

tion with constant coefficient.

Theorem 2.3.5. (Annihilator Method) Suppose that y (t) solves,

y(t+ n) + pn−1y(t+ n− 1) + . . .+ p0y(t) = r(t) (2.21)

and that r(t) satisfies

(
Em + qm−1E

m−1 + · · ·+ q0
)
r(t) = 0.

Then y(t) satisfies

(
Em + qm−1E

m−1 + · · ·+ q0
)
(En + . . .+ p0) y(t) = 0.

(Here, Em + qm−1E
m−1 + · · ·+ q0 is called the annihilator.)

Proof. Using the shift operator E, (2.21) can be written as

(
En + pn−1E

n−1 + · · · ·+pa
)
y(t) = r(t).

Applying (Em + qm−1E
m−1 + · · ·+ q0) on both sides, we get

(
Em + qm−1E

m−1 + · · ·+ q0
) (
En + pn−1E

n−1 + · · ·+ p0
)
y(t) =

(
Em + qm−1E

m−1 + . . .+ q0
)
r(t)

= 0.

Hence, the theorem.
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Example 2.3.6. Solve y(t+ 2)− 7y(t+ 1) + 6y(t) = t.

The given difference equation can be written as(
E2 − 7E + 6

)
y(t) = t.

=⇒ (E − 1)(E − 6)y(t) = t.

Now, t satisfies the homogeneous equation

(E − 1)2t = ∆2t = 0.

Here, E − 1)2 is the annihilator.

Then, by the previous theorem, y(t) satisfies

(E − 1)2(E − 1)(E − 6)y(t) = 0.

=⇒ (E − 1)3(E − 6)y(t) = 0.

∴ y(t) = C16
t + C2 + C3t+ C4t

2.

Substitute the value of y(t) in the given difference equation. Then

C16
t+2 + C2 + c3(t+ 2) + C4(t+ 2)2 − 7C16

t+1 − 7C2

−7C3(t+ 1)− 7C4(t+ 1)2 + 6C16
t + 6C2 + 6C3t+ 6C4t

2 = t

⇒ (6t+2 − 76t+1 + 6t+1)− 5C3 + (−10t− 3)C4 = t

⇒ 6t+1C1[6− 7 + 1]− 5C3 + (−10t− 3)C4 = t

⇒ −10C4t+ (−5C3 − 3C4) = t.

Equating the coefficients of t, we get

−10C4 = 1

⇒ C4 =
−1

10
.

Also, equating the constants, we get

−5C3 − 3C4 = 0

⇒ 5C3 =
−3

10

⇒ C3 =
3

50
.

Thus,

y(t) = C16
t + C2 +

3

50
t− 1

10
t2.
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Example 2.3.7.

Solve ∆y(t) = 3t sin
π

2
t, (t = a, a+ 1, · · · ). (2.22)

The given difference equation can be written as

(E − 1)y(t) = 3t sin
π

2
t.

Now, 3t sin π
2
t must satisfy an equation with complex roots.

The polar coordinates of 3t sin π
2
t, 3t cos π

2
t are r = 3 and θ = ±π

2
.

∴ λ = 3±
π
2
i

= ±3i.

=⇒ 3t sin π
2
t satisfies the homogeneous equation

(E − 3i)(E + 3i)3t sin
π

2
t = 0.

=⇒
(
E2 + 9

)
3t sin

π

2
t = 0.

Thus y(t) satisfies

(
E2 + 9

)
(E − 1)y(t) = 0.

∴ The general solution is given by

y(t) = C1 + C23
t sin

π

2
t+ C33

t cos
π

2
t.

Substituting this expression for y(t) in equation (2.22), we get

C1 + C23
t+1 sin

π

2
(t+ 1) + C33

t+1 cos
π

2
(t+ 1)− C1 − C23

t sin
π

2
t− C33

t cos
π

2
t = 3t sin

π

2
t

⇒ C23
t
(
3 sin

π

2
t cos

π

2
+ 3 cos

π

2
t sin

π

2
− sin

π

2
t
)

+C33
t
(
3 cos

π

2
t cos

π

2
− 3 sin

π

2
+ sin

π

2
− cos

π

2
t
)
= 3t sin π/2t

⇒ C23
t
(
3 cos

π

2
t− sin

π

2
t
)
+ C33

t
(
−3 sin

π

2
t− cos π = 3t sin

π

2
t

⇒
(
−C23

t − 3C33
t
)
sin

π

2
t+
(
3C23

t − C33
t
)
cos

π

2
t = 3t sin

π

2
t.
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Equating the like terms, we have

−C2 − 3C3 = 1,

and 3C2 − C3 = 0.

=⇒ C3 =
−3

10
and C2 = − 1

10
.

Thus, y(t) = C1 −
3t

10

(
sin

π

12
t+ 3 cos

π

2
t
)
,

where C1 is arbitrary.

Method of solving system of Linear Difference Equations

Consider the system of linear difference equations

L(E)y(t) +M(E)z(t) = r(t)

P (E)y(t) +Q(E)z(t) = s(t),

where y(t) and z(t) are the unknowns and L,M,P and Q are polynomials. Apply Q(E)

to the first equation and M(E) to the second equation and then subtract to obtain

(Q(E)L(E)−M(E)P (E))y(t) = Q(E)r(t)−M(E)s(t).

This is a linear equation with constant coefficients. From the we can find y(t) and then

by substituting the expression for y(t) in any one of the original equations, we get z(t).

Example 2.3.8. Solve the system

y(t+ 2)− 3y(t) + z(t+ 1)− z(t) = 5t

y(t+ 1)− 3y(t) + z(t+ 1)− 3z(t) = 2.5t.

The given system of equations can be written as

(
E2 − 3

)
y(t) + (E − 1)z(t) = 5t (2.23a)

(E − 3)y(t) + (E − 3) z(t) = 2.5t. (2.23b)

Applying (E − 3) to the 1st equation and (E − 1) s to the 2nd equation, we get(
E2 − 3

)
(E − 3)y(t) + (t− 3)(E − 1)z(t) = (E − 3)5t

(E − 1)(E − 3)y(t) + (E − 3)(E − 1)z(t) = (E − 1)25t.
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Subtracting, we get

((
E2 − 3

)
(E − 3)− (E − 1)(E − 3)

)
y(t) = (E − 3)5t − (E − 1)2 · 5t

(E − 3)
(
E2 − E − 2

)
y(t) = (E − 3− 2E + 2)5t

(E − 3)(E − 2)(E + 1)y(t) = −(E + 1)5t

= −
(
5t+1 + 5t

)
= −6 · 5t. (2.24)

By the annihilator method, we can get an appropriate trial solution y(t) = C5t.

Substituting this in (2.24), we get

(E − 3)(E − 2)(E + 1)C.5t = −6 · 5t(
E3 − E2 + E + 6

)
C.5t = −65t

(5t+3 − 4 · 5t+2 + 5t+1 + 6 · 5t = −6 · 5

C · 5t
(
5.− 4 · 52 + 5 + 6

)
= −6 · 5t

(125− 100 + 11)c = −6

36C = −6

C = −1/6

y(t) = C13
t + C22

t + C3(−1)2 = 5t.

Substituting this in (2.23b), we get:

(E − 3)
(
C13

t + C22
t + C3(−1)t − 5t

)
+ (t− 3)z(t) = 2 · 5t

⇒ C13
t+1 + C22

t+1 + C3(t− 1)t+1 − 5t+1

6
− C13

t+1 − 3C22
t

+3C3(−1)t+1 +
5t

2
+ (E − 3)z(t) = 2 · 5t

⇒ C22
t(2− 3) + 4C3(−1)t+1 +

5t

2
(1− 5/3) + (E − 3)3(t) = 2 · 5t

⇒ −C22
t + 4C3(−1)t+1 − 5

3
+ (E − 3)r(t) = 2 · 5t

∴ (E − 3)z(t) = C22
t + 4C3 − (−1)t +

5t

3
+ 2 · 5 = C22

t + 4C3(−1)t +
1

3
.
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Let us again use the annihilator method to find z(t) :

(E − 3)C2t = C22
t ⇒ C(2t+1 − 3 · 2t) = C2 · 2t

⇒ C = −C2(E − 3)z(t)

= −C22
t

z(t) = −C22
t

(E − 3)C(−1)t = 4C3(−1)t ⇒ C((−1)t+1 − 3(−1)t) = 4C3(−1)t

⇒ −4(−1)t = 4C3(−1)t

C = −C3

and (E − 3)C · 5t = 7

3
5t ⇒ C

(
5t+1 − 3 · 5t

)
=

7

3
5t

⇒ C(5− 3) =
7

3

⇒ C =
7

6

Thus, z(t) = −C22
t − C3(−1)t +

7

6
5t + C43

t.

Now, substituting the expressions for y and z in (1), we get

(E2 − 3)y(t) + (E − 1)z(t) = 5t

=⇒
(
C13

t+2 + C22
t+2 + C3(−1)t+2 − 5t

6
−3C13

t − 3C22
t − 3C3(−1)t +

5t

2

)
+

(−C22
t+1 − C3(−1)t+1 +

7

6
5t+1 + C43

t+1 + C22
t + C3(−1)t − 7

6
5t − C43

t) = 5t

=⇒
(
6C13

t + C22
t − 2C3(−1)t − 11

3
5t − C22

t + 2C3(−1)t +
14

3
5t + 2C4 − 3t

)
= 5t

=⇒ (bC6 + 2C4) 3tC
t
5 = 5t

=⇒ (6C1 + 2C4) 3
t + 5t = 0

=⇒ (6C1 + 2C4) 3
t = 0

=⇒ C4 = −3C1.

∴ The general solution is

y(t) = C13
t + C22

t + C3(−1)t − 5t

6
,

z(t) = −3C13
t − C22

t − C3(−1)t +
7

6
5t.
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The method of variation of parameters

If we assume that n linearly independent solutions of (2.9) are known, then the

method of variations of parameters gives all solutions of equation (2.8) in terms of

n indefinite terms. Let us do this for n = 2.

Let u1(t), u2(t) be independent solutions of

p2(t)u(t+ 2) + p1(t)u(t+ 1) + p0(t)u(t) = 0. (2.25)

We have to find a solution of

p2(t)y(t+ 2) + p1(t)y(t+ 1) + p0(t)y(t) = r(t) (2.26)

of the form

y(t) = a1(t)u1(t) + a2(t)u2(t),

where a1 and a2 are to be determined.

Then y(t+ 1) = a1(t+ 1)u1(t+ 1) + a2(t+ 1)u2(t+ 1)

= a1(t+ 1)u1(t+ 1) + a1(t)u1(t+ 1)− a1(t)u1(t+ 1)

−a2(t+ 1)u2(t+ 1) + a2(t)u2(t+ 1)

= a2(t)u2(t+ 1)− a1(t)u1(t+ 1) + a2(t)u2(t+ 1)

+∆a1(t)u1(t+ 1) + ∆a2(t)u2(+t+ 1).

Choose a1(t) and a2(t) so that

∆a1(t)u1(t+ 1) + ∆a2(t)u2(t+ 1) = 0. (2.27)

∴ y(t+ 1) = a1(t)u1(t+ 1) + a2(t)u2(t+ 1)

Then y(t+ 2) = a1(t+ 1)u1(t+ 2) + a2(t+ 1)u2(t+ 2)

= a1(t+ 1)u1(t+ 2) + a1(t)u1(t+ 2)− a1(t)u1 (t+ 2) + a2(t+ 1)u2(t+ 2)

+a2(t)u2(t+ 2)− a2(t)u2(t+ 2)

= a1(t)u1(t+ 2) + a2(t)u2(t+ 2) + ∆a1(t)u1(t+ 2) + ∆a2(t)u2(t+ 2).
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Substituting the expressions for y(t), y(t+ 1) and y[t+ 2 ) in equation (2.26), we get

p2(t)y(t+ 2) + p1(t)y(t+ 1) + p0(t)y(t) = p2(t) [a1(t)u1(t+ 2) + a2(t)u2(t+ 2) + ∆a1(t)u1(t+ 2)

+∆a2(t)u2(t+ 2)] + p1(t) [a1(t)u1(t+ 1) + a2(t)u2(t+ 1)]

+p0(t) [a1(t)u1(t) + a2(t)u2(t)]

= a1(t) {p2(t)u1(t+ 2) + p1(t)u1(t+ 1) + p0(t)u1(t)]

+a2(t) [p2(t)u2(t+ 2) + p1(t)u2(t+ 1) + p0(t)u2(t)]

+p2(t) [u1(t+ 2)∆a1(t) + u2(t+ 2)∆a2(t)]

= p2(t) [u1(t+ 2)∆a1(t) + u2(t+ 2)∆a2(t)] .

Thus, y(t) satisfies equation (2.26) if

u1(t+ 2)∆a1(t) + u2(t+ 2)a2(t) =
r(t)

p2(t)
. (2.28)

Therefore, y(t) = a1(t)u1(t)+a2(t)u2(t) is a solution of equation (2.26) if ∆a1(t),∆a2(t)

satisfy the linear equations (2.27) and (2.28). The determinant of the coefficients in

equations (2.27) and (2.28) is

=

∣∣∣∣ u1(t+ 1) u2(t+ 1)
u1(t+ 2) u2(t+ 2)

∣∣∣∣
= w(t+ 1)

̸= 0 (Since u1, u2 are linearly independent).

∴ This system of equations (2.27) and (2.28) has a unique solution.

Example 2.3.9. Find all solutions of y(t+ 2)− 7y(t+ 1) + 6y(t) = t if u1(t) = 1 and

u2(t) = 6t are the two independent solutions of its homogeneous equation.

By variation of parameters method,

y(t) = a1(t)u1(t) + a2(t)u2(t)

is a solution of the given difference equation if

u1(t+ 1)∆a1(t) + u2(t+ 1)∆a2(t) = 0

and

u1(t+ 2)∆a1(t) + u2(t+ 2)∆a2(t) =
r(t)

p2(t)
.
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Then, we have
∆a1(t) + bt+1∆a2(t) = 0 → (1)

∆a1(t) + bt+2∆a2(t) = t→ (2)

(2) - (1) =⇒ ∆6t
+1(6−1)∆a2(t) = t

⇒ ∆a2(t) =
t

56t+1
=

t

30
6−t

∴ ∆a1(t) = −6t+1 t

30
6t =

−t
5
.

Then

a1(t) =
∑(

− t

5

)
+ C

= −1

5

∑
t+ C

= −1

5

∑
t(1) + C

= −1

5

∑ t(2)

2
+ C

= −t
(2)

10
+ C

= −t(t− 1)

10
+ C.

Next,

∆a2(t) =
t

30
6−t ⇒ a2(t) =

∑ t

30
6−t +D

=
1

30

∑
t

(
1

6

)t

i

+D

=
1

30

[
t

(
−6

5

)(
1

6

)t

−
∑(

−6

5

)(
1

6

)t+1
]
+D

=
1

30

[
−6

5
t+

(
1

6

)t

+
6

5
× 1

6
×
(
−6

5

)(
1

6

)t
]
+D

=
−t
25

(
1

6

)t

− 1

125

(
1

6

)t

+D.
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∴ The general solution of the given difference equation is

y(t) = a1(t)u1(t) + a2(t)u2(t)

=

(
−t(t− 1)

10
+ C

)
+

[
−t
25

((
1

6

)t
)

− 1

125

((
1

6

)t
)

+D

]
6t

= C +D6t − t2

10
+

t

10
− t

25
− 1

125

= C +D6t − t2

10
+

3t

50
− 1

125

= F +D6t − t2

10
+

3t

50
,

where F,D are constants.

Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Annihilator method

2. Solving system of linear difference equations with constant coefficients

3. Method of variation of parameters

Check your Progress:

1. The characteristic polynomial of u(t+ n) + pn−1u(t+ n− 1) + · · ·+ p0u(t) = 0 is

of the form ..........

(A) λn + pn−1λ
n−1 + · · ·+ p0 (B) pn−1λ

n−1 + · · ·+ p0

(C) pn−1 + pn−2 + · · ·+ p0 (D) None of these

2. λn + pn−1λ
n−1 + · · ·+ p0 = 0 is the characteristic equation for the ..........

(A) nth order equation (B) (n− 1)th order equation

(C) (n+ 1)th order equation (D) None of these

3. The annihilator of the difference equation y(t+ 2)− 7y(t+ 1) + 6y(t) = t is

(A) (E− 6)(E− 1) (B) (E+1)(E− 6) (C) (E− 6)(E− 1)2 (D) (E− 1)2
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Unit Summary:

In this unit, the basic theory for linear difference equations is developed, and meth-

ods of finding closed form solutions to linear difference equations with constant coef-

ficients are discussed.

Glossary:

• W (t) - The matrix of Casorati

• w(t) - Casoratian (The determinant of matrix of Casorati)

Self-Assessment Questions:

1. Find all solutions:

(a) u(t+ 1)− e3tu(t) = 0.

(b) u(t+ 1)− ecos 2tu(t) = 0.

2. What is the order of this equation

∆3y(t) + ∆2y(t)−∆y(t)− y(t) = 0?

3. Show that u1(t) = 2t and u2(t) = 3t are linearly independent solutions of

u(t+ 2)− 5u(t+ 1) + 6u(t) = 0

4. Solve u(t+ 2) + 6u(t+ 1) + 3u(t) = 0.

Exercises:

1. Suppose y(1) = 2 and find the solution of

y(t+ 1)− 3y(t) = et (t = 1, 2, 3, · · · )

2. (a) Show that u1(t) = t2 + 2, u2(t) = t2 − 3t and u3(t) = 2t − 1 are solutions of

∆3u(t) = 0

(b) Compute the Casoratian of the functions in (a) and determine whether they

are linearly independent.
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3. Solve by the annihilator method

y(t+ 2) + 4y(t) = cos t.

4. Find all u(t) and v(t) that satisfy

u(t+ 2)− 3u(t) + 2v(t) = 0
u(t) + v(t+ 2)− 2v(t) = 0.

5. Use variation of parameters to solve

y(t+ 3)− 2y(t+ 2)− y(t+ 1) + 2y(t) = 8 · 3t.

Answers for check your progress:

Section 2.1 1. (B) 2. (B) 3. (C)

Section 2.2 1. (B) 2. (A) 3. (D)

Section 2.3 1. (A) 2. (A) 3. (D)
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Unit 3

Linear Difference Equations (continued)

Objectives:

This unit deals with solving linear difference equations with variable coefficients

using generating functions and z-transforms.

3.1 Equations with Variable Coefficients

Lemma 3.1.1. Let u1(t), u2(t), · · · , un(t) be solutions of the equation

pn(t)u(t+ n) + pn−1(t)u(t+ n− 1) + · · ·+ p0(t)u(t) = 0 (3.1)

and let w(t) be the corresponding Casoratian. Then w(t) satisfies

w(t+ 1) = (−1)n
p0(t)

pn(t)
w(t). (3.2)

Proof. Given that u1(t), u2(t), · · · , un(t) are solutions of (3.1).

Then, we have

w(t+ 1) =

∣∣∣∣∣∣∣∣∣∣∣

u1(t+ 1) u2(t+ 1) · · · un(t+ 1)
u1(t+ 2) u2(t+ 2) · · · un(t+ 2)

...
...

...
...

u1(t+ n− 1) u2(t+ n− 1) · · · un(t+ n− 1)
u1(t+ n) u2(t+ n) · · · un(t+ n)

∣∣∣∣∣∣∣∣∣∣∣
.

Since w(t+ 1) is unchanged if we replace the last row by

(
nth row

)
+
p1
pn

× (1st row ) + · · ·+ pn−1

pn
×
(
(n− 1)th row

)
,
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we get,

w(t+ 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

u1(t+ 1) u2(t+ 1) · · · un(t+ 1)
u1(t+ 2) u2(t+ 2) · · · un(t+ 2)

...
...

...
...

u1(t+ n− 1) u2(t+ n− 1) · · · un(t+ n− 1)
u1(t+ n) + p1

pn
u1(t+ 1) u2(t+ n) + p1

pn
u2(t+ 1) · · · un(t+ n) + p1

pn
un(t+ n− 1)

· · ·+ pn−1

pn
u1(t+ n− 1) · · ·+ pn−1

pn
u2(t+ n− 1) · · · +pn−1

pn
un(t+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=⇒ w(t+ 1) =

∣∣∣∣∣∣∣∣∣∣∣

u1(t+ 1) u2(t+ 1) · · · un(t+ 1)
u1(t+ 2) u2(t+ 2) · · · un(t+ 2)

...
...

...
...

u1(t+ n− 1) u2(t+ n− 1) · · · un(t+ n− 1)
− p0

pn
u1(t) − p0

pn
u2(t) · · · − p0

pn
un(t)

∣∣∣∣∣∣∣∣∣∣∣
Rearranging the rows, we get

w(t+ 1) = (−1)n−1


− p0

pn
u1(t) − p0

pn
u2(t) · · · − p0

pn
un(t)

u1(t+ 1) u2(t+ 1) · · · un(t+ 1)
u1(t+ 2) u2(t+ 2) · · · un(t+ 2)

...
...

...
...

u1(t+ n− 1) u2(t+ n− 1) · · · un(t+ n− 1)

 .

=⇒ w(t+ 1) = (−1)n
p0(t)

pn(t)


u1(t) u2(t) · · · un(t)

u1(t+ 1) u2(t+ 1) · · · un(t+ 1)
...

...
...

...
u1(t+ n− 1) u2(t+ n− 1) · · · un(t+ n− 1)



=⇒ w(t+ 1) = (−1)n
p0(t)

pn(t)
w(t).

Theorem 3.1.2. Reduction of order method for a 2nd order equation

If u1(t) is a solution of

p2(t)u(t+ 2) + p1(t)u(t+ 1) + p0(t)u(t) = 0 (3.3)

that is never zero and p0(t) and p2(t) are not zero, then

u2(t) = u1(t)
∑ w(t)

u1(t)u1(t+ 1)

yields an independent solution of equation (3.3), where w(t) is a non-zero solution of

equation w(t+ 1) = (−1)n p0(t)
pn(t)

w(t).
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Proof. Given that u1(t) is one of the solution of equation (3.3). Let u2(t) be the other

solution of equation (3.3). We know that

∆

(
u2(t)

u1(t)

)
=

u1(t)∆u2(t)− u2(t)∆u1(t)

u1(t)Eu1(t)

=
w(t)

u1(t)u1(t+ 1)

⇒ u2(t)

u1(t)
=

∑ w(t)

u1(t)u1(t+ 1)

=⇒ u2(t) = u1(t)
∑ w(t)

u1(t)u1(t+ 1)
.

Example 3.1.3. Solve the equation

u(t+ 2)− u(t+ 1)− 1

t+ 1
u(t) = 0.

We know that, u1(t) = t+ 1 is a solution. By lemma (3.1), the Casoratian w(t) satisfies,

w(t+ 1) = (−1)2
p0(t)

pn(t)
w(t)

=

(
−1

t+ 1

)
w(t).

=⇒ w(t) = w(a)
t−1∏
s=a

p(s)

= w(0)
t−1∏
s=0

(
−1

s+ 1

)

= w(0)

(
− 1

)(
−1

2

)
· · ·

(
−1

t

)

= w(0)
(−1)t

t!

=
(−1)t

t!
if w(0) = 1

By Theorem (3.1.2), the second independent solution is given by

u2(t) = u1(t)
∑ w(t)

u1(t)u1(t+ 1)

= (t+ 1)
∑ (−1)t

t!(t+ 1)(t+ 2)

= (t+ 1)
∑ (−1)t

(t+ 2)!

=⇒ u2(t) = (t+ 1)
t−1∑
k=0

(−1)k

(k + 2)!
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Hence, the general solution is,

u(t) = Cu1(t) +Du2(t)

= C(t+ 1) +D(t+ 1)
t−1∑
k=0

(−1)k

(k + 2)!

=⇒ u(t) = (t+ 1)

[
C +D

t−1∑
k=0

(−1)k

(k + 2)!

]

where C and D are constants.

Example 3.1.4. Solve

t(t+ 1)∆2u(t) + at∆u(t) + bu(t) = 0, (3.4)

where a and b are constants.

(The Equation (3.4) is similar to the Cauchy-Euler differential equation.)

By substituting the trial solution u(t) = (t+ r − 1)r, we have

t(t+ 1)∆2(t+ r − 1)r + at∆(t+ r − 1)r + b(t+ r − 1)r = 0

t(t+ 1)r(r − 1)(t+ r − 1)r−2 + atr(t+ r − 1)r−1 + b(t+ r − 1)r = 0 (3.5)

Now,

t(t+ r − 1)r−1 = t(t+ r − 1)(t+ r − 1− 1)(t+ r − 1− 2) . . .

(t+ r − 1− (r − 1− 1))

= t(t+ r − 1)(t+ r − 2) . . . (t+ 2)(t+ 1)

= (t+ r − 1)(t+ r − 2) . . . (t+ 2)(t+ 1)t

= (t+ r − 1)r (3.6a)

and t(t+ 1)(t+ r − 1)r−2 = t(t+ 1)(t+ r − 1)(t+ r − 2) . . .

(t+ r − 1− (r − 4))(t+ r − 1− (r − 3))

= t(t+ 1)(t+ r − 1) . . . (t+ 3)(t+ 2)

= (t+ r − 1)(t+ r − 2) · · · (t+ 2)(t+ 1)t

= (t+ r − 1)r (3.6b)
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Substituting (3.6a) and (3.6a) in (3.5), we get

r(r − 1)(t+ r − 1)r + ar(t+ r − 1)r + b(t+ r − 1)r = 0

=⇒ r2(t+ r − 1)r + (a− 1)r(t+ r − 1)r + b(t+ r − 1)r = 0

=⇒
(
r2 + (a− 1)r + b

)
(t+ r − 1)r = 0

=⇒ r2 + (a− 1)r + b = 0 (3.7)

If equation (3.7) has distinct roots r1, r2, then the difference equation has the independent

solutions
u1(t) = (t+ r1 − 1)r1 ,

u2(t) = (t+ r2 − 1)r2 .

In the case of repeated roots, we can use Theorem 3.1.2 to obtain the second solution.

Now, taking a = −5 and b = 9 in equation (3.4), we have

t(t+ 1)∆2u(t)− 5t∆u(t) + 9u(t) = 0. (3.8)

Then, equation (3.7) becomes

r2 − 6r + 9 = 0

=⇒ (r − 3)2 = 0

=⇒ r = 3.

So, we get one of the solution of (3.8) as

u1(t) = (t+ r − 1)r

= (t+ 3− 1)r = (t+ 2)3

= (t+ 2)(t+ 1)t.

Next, let us rewrite the equation (3.8) as

t(t+ 1)(E − I)2u(t)− 5t(E − I)u(t) + 9u(t) = 0

=⇒ t(t+ 1)u(t+ 2)−
(
2t2 + 7t

)
u(t+ 1) + (t+ 3)2u(t) = 0.

Here n = 2, p0(t) = (t+ 3)2, p2(t) = t(t+ 1).

Then, w(t) satisfies w(t+ 1) = (−1)n p0(t)
pn(t)

w(t).
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=⇒ w(t+ 1) = (−1)2
(t+ 3)2

t(t+ 1)
w(t)

=⇒ w(t+ 1) =
(t+ 3)2

t(t+ 1)
w(t)

Then,

w(t) = w(1)
t−1∏
s=1

s+ 32

s(s+ 1)

= w(1)

(
42

1(2)

)(
52

2(3)

)
· · ·

(
(t+ 2)2

(t− 1)(t)

)

= w(1)
(t+ 2)!(t+ 2)!

(t− 1)!t!.32.22

= w(1)
(t+ 2)(t+ 1)t(t+ 2)(t+ 1)

32.22

= t(t+ 1)2(t+ 2)2 if w(1) = 32.22.

Thus, the second solution of (3.8) is given by

u2(t) = u1(t)
∑ w(t)

u1(t)u1(t+ 1)

= (t+ 2)(t+ 1)t
∑ t(t+ 1)2(t+ 2)2

(t+ 2)(t+ 1)t(t+ 3)(t+ 2)(t+ 1)

= (t+ 2)(t+ 1)t
∑ 1

t+ 3

= (t+ 2)3
∑ 1

t+ 3
.

∴ The general solution is

u(t) = Cu1(t) +Du2(t)

= C(t+ 2)3 +D(t+ 2)3
∑ 1

t+ 3

= (t+ 2)3
[
C +D

∑ 1

t+ 3

]
.

where C, D are constants.

Example 3.1.5. Solve

(n+ 2)un+2 − (n+ 3)un+1 + 2un = 0

where n = 0, 1, 2, · · · .

Let the generating function be

g(x) =
∞∑
n=0

unx
n.
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First, multiplying each term in the difference equation by xn and summing as n goes from

0 to ∞, we get

∞∑
n=0

(n+ 2)un+2x
n −

∞∑
n=0

(n+ 3)un+1x
n + 2

∞∑
n=0

unx
n = 0.

Next, making a change of index in the first two summations, we get,

∞∑
n=2

nunx
n−2 −

∞∑
n=1

(n+ 2)unx
n−1 + 2

∞∑
n=0

unx
n = 0. (3.9)

Since g′(x) =
∑∞

n=1 nunx
n−1, we can write

g′(x) = u1 +
∞∑
n=2

nunx
n−1

=⇒
∞∑
n=2

nunx
n−2 =

1

x
(g′(x)− u1)

and

g(x) =
∞∑
n=0

unx
n = u0 +

∞∑
n=1

unx
n

=⇒
∞∑
n=1

unx
n−1 =

1

x
(g(x)− u0)

Substituting these expressions into (3.9), we have

1

x
(g′(x)− u1)− g′(x)− 2

x
(g(x)− u0) + 2g(x) = 0

or

g′(x)− 2g(x) =
u1 − 2u0
1− x

.

For u1 = 2u0, we have g′(x)− 2g(x) = 0

=⇒ g(x) = e2x

=⇒ g(x) =
∞∑
n=0

2n

n!
xn

∴ un =
2n

n!
, (n = 0, 1, 2, · · · ).

This is one of the solution of the given equation.

To find the second solution, consider

w(n+ 1) = (−1)2
2

n+ 2
w(n)
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=⇒ w(n) = w(0)
n−1∏
s=0

2

(s+ 2)

= w(0)

(
2

2

)(
2

1 + 2

)(
2

2 + 2

)
· · ·

(
2

1 + n

)
= w(0)

2n

(n+ 1)!

=
2n

(n+ 1)!
if w(0) = 1.

∴ The second solution is given by

vn = un
∑ w(n)

unun+1

=
2n

n!

∑ 2n

(n+1)!

2n

n!
2n+1

(n+1)!

=
2n

n!

n−1∑
k=0

k!

2k+1
.

Hence, the general solution is Cun +Dvn , where C,D are constants.

Example 3.1.6. Find the factorial series solution of

2u(t+ 2) + (t+ 2)(t+ 1)u(t+ 1)− (t+ 2)(t+ 1)u(t) = 0.

We can rewrite it as

2u(t+ 2) + (t+ 2)(t+ 1)∆u(t) = 0.

Substituting u(t) =
∑∞

k=0 akt
−k, we have

∞∑
k=0

2ak(t+ 2)−k + (t+ 2)(t+ 1)
∞∑
k=1

ak(−k)t−k−1 = 0.

Since
(t+ 2)(t+ 1)t−k−1 = (t+ 2)(t+ 1)

Γ(t+ 1)

Γ(t− (−k − 1) + 1)

= (t+ 2)(t+ 1)
Γ(t+ 1)

Γ(t+ k + 2

= (t+ 2)
Γ(t+ 2)

Γ(t+ k + 2)

=
Γ(t+ 3)

Γ(t+ k + 2)

= (t+ 2)−k+1,
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we have
∞∑
k=0

2ak(t+ 2)−k +
∞∑
k=1

ak(−k)(t+ 2)−k+1 = 0.

Make the change of index k → k + 1 in the second summation and combine the series to

obtain
∞∑
k=0

[2ak − (k + 1)ak+1] (t+ 2)−k = 0.

Then a0 is arbitrary and

ak+1 =
2

k + 1
ak (k ≥ 0),

so

ak =
2k

k!
a0.

∴ A factorial series solution is

u(t) = a0

∞∑
k=0

2k

k!
t−k,

and the series converges for all t except the negative integers.

Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Solving linear difference equations with variable coefficients

2. Reduction of order method

3. Method of generating function

4. Factorial series solution

Check your Progress:

1. If u1(t), u2(t), · · · , un(t) are solutions of the equation

pn(t)u(t+n)+ pn−1(t)u(t+n− 1)+ · · ·+ p0(t)u(t) = 0, then their Casoratian w(t)

satisfies .................

(A) w(t+ 1) = (−1)n pn(t)
p0(t)

w(t) (B) w(t+ 1) = (−1)n p0(t)
pn(t)

w(t)

(C) w(t+ 1) = pn(t)w(t) (D) None of these

2. Which of the following is a solution of u(t+ 2)− u(t+ 1)− 1
t+1
u(t) = 0?
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(A) t (B) t− 1 (C) t+ 1 (D) None of these

3. The order of the Cauchy – Euler equation is ........

(A) 1 (B) 2 (C) n (D) None of these

3.2 The z-Transform

The z-transform is a mathematical device similar to a generating function which pro-

vides an alternative method for solving linear difference equations as well as certain

summation equations.

Definition 3.2.1. The z-transorm of a sequence {yk} is a function Y(z) of a complex

variable defined by

Y (z) = Z (yk) =
∞∑
k=0

yk
zk

for those values of z for which the series converges. We say that the z-transform "exists"

provided there is a number R > 0 such that
∑∞

k=0
yk
zk

converges for |z| > R.

The sequence {yk} is said to be "exponentially bounded" if there is an M > 0 and a

c > 1 such that

|yk| ≤Mck

for k ≥ 0,

Theorem 3.2.2. If the sequence {yk} is exponentially bounded, then the z transform of

{yk} exists.

Proof. Assume that the sequence {yk} is exponentially bounded. Then there is an

M > 0 and a c > 1 such that

|yk| ≤Mck

for k ≥ 0. We have
∞∑
k=0

∣∣∣yk
zk

∣∣∣ ≤ ∞∑
k=0

|yk|
|z|k

≤M

∞∑
k=0

∣∣∣ c
z

∣∣∣k
and the last sum converges for |z| > c. It follows that the z-transform of the sequence

{yk} exists.

In this section we will frequently use, without reference, the following theorem.
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Theorem 3.2.3. If the sequence {fk} is exponentially bounded, each solution of the nth

order difference equation

yk+n + p1yk+n−1 + p2yk+n−2 + · · ·+ pnyk = fk

is exponentially bounded and hence its z-transform exists.

Proof. We will give the proof of this theorem just for the case n = 2. Assume yk is a

solution of the second order equation

yk+2 + p1yk+1 + p2yk = fk

and {fk} is exponentially bounded. Since {fk} is exponentially bounded, there is an

M > 0 and a c > 1 such that

|fk| ≤Mck

for k ≥ 0. Since yk is a solution of the above second order difference equation, we

have that

|yk+2| ≤ |p1| |yk+1|+ |p2| |yk|+Mck. (3.10)

Let

B = max {|p1| , |p2| , |y0| , |y1| ,M, c}

We now prove by induction that

|yk| ≤ 3k−1Bk (3.11)

for k ≥ 0 (k = 1, 2, 3 · · · ). It is easy to see that the inequality (3.11)is true for k = 1.

Now assume that k0 ≥ 1 and that the inequality (3.11) is true for 1 ≤ k ≤ k0. Letting

k = k0 − 1 in (3.10), we have that

|yk0+1| ≤ |p1| |yk0|+ |p2| |yk0−1|+Mck0−1

Using the induction hypothesis and the definition of B we get that

|yk0+1| ≤ B3k0−1Bk0 +B3k0−2Bk0−1 +BBk0−1

It follows that

|yk0+1| ≤ 3k0−1Bk0+1 + 3k0−1Bk0+1 + 3k0−1Bk0+1 = 3k0Bk0+1
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which completes the induction. From the inequality (3.11),

|yk| ≤ (3B)k

for k = 1, 2, 3 · · · , so yk is exponentially bounded. By Theorem (3.2.2) , the z transform

of yk exists.

Example 3.2.4. Find the z-transform of the sequence {yk = 1}.

The z-transform of the sequence {yk = 1} is given by

Y (z) = Z(1) =
∞∑
k=0

1

zk

= 1 +
1

z
+

1

z2
+ . . .

= (1− 1

z
)−1

=
1

1− 1
z

=
z

z − 1
where

1

|z|
< 1

=⇒ Y (z) =
z

z − 1
where |z| > 1

Example 3.2.5. Find the z-transform of the sequence {uk = ak} .

The z-transform of the sequence {uk = ak} is given by

U(z) = Z(ak) =
∞∑
k=0

ak

zk

= 1 +
a

z
+
a2

z2
+ . . .

= 1 +
a

z
+
(a
z

)2
+ . . .

= (1− a

z
)−1

=
1

1− a
z

=
z

z − a
where

|a|
|z|

< 1

U(z) =
z

z − a
where |z| > |a|

Example 3.2.6. Find the z-transform of the sequence {vk = k}∞k=0.
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The z-transform of the sequence {vk = k}∞k=0 is given by

V (z) = Z(k) =
∞∑
k=0

k

zk

=
∞∑
k=0

k + 1

zk+1
.

=⇒ V (z) =
1

z

∞∑
k=0

k + 1

zk

=
1

z

∞∑
k=0

k

zk
+

1

z

∞∑
k=0

1

zk

=⇒ V (z) =
1

z
V (z) +

1

z
Y (z) where Y (z) = Z(1)

=⇒ (1− 1

z
)V (z) =

1

z
Y (z) where

1

|z|
< 1

=⇒ (
z − 1

z
)V (z) =

1

z
Y (z) where |z| > 1

=⇒ (z − 1)V (z) =
z

z − 1
where |z| > 1

=⇒ V (z) =
z

(z − 1)2
where |z| > 1.

Theorem 3.2.7. Linearity Theorem

If a and b are constants, then

Z(auk + bvk) = aZ(uk) + bZ(vk)

for those z in the common domain of U(z) and V(z).

Proof. Consider,

Z(auk + bvk) =
∞∑
k=0

auk + bvk
zk

=
∞∑
k=0

auk
zk

+
∞∑
k=0

bvk
zk

= a
∞∑
k=0

uk
zk

+ b

∞∑
k=0

vk
zk

=⇒ Z(auk + bvk) = aZ(uk) + bZ(vk).
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Example 3.2.8. Find the z-transform of the sequence {vk = sinak}∞k=0 .

Z(sinak) = Z(
eiak − e−iak

2i
)

=
1

2i
Z(eiak)− 1

2i
Z(e−iak)

=
1

2i

∞∑
k=0

eiak

zk
− 1

2i

∞∑
k=0

e−iak

zk

=
1

2i
[1 +

eia

z
+ (

eia

z
)2 + . . . ]− 1

2i
[1 +

e−ia

z
+ (

e−ia

z
)2 + . . . ]

=
1

2i

[ 1

1− eia

z

]
− 1

2i

[ 1

1− e−ia

z

]
=

1

2i

[ z

z − eia

]
− 1

2i

[ z

z − e−ia

]
=

1

2i

[ z

z − eia
− z

z − e−ia

]
=

1

2i

[z(z − e−ia)− z(z − eia)

(z − eia)(z − e−ia)

]
=

1

2i

[ z2 − ze−ia − z2 + zeia

z2 − ze−ia − zeia + eiae−ia

]
=

1

2i

[ zeia − ze−ia

z2 − z(eia + e−ia) + 1

]

=
1

2i

[ z(eia − e−ia)

z2 − z(eia + e−ia) + 1

]
=

1

2i

[ 2izsina

z2 − 2zcosa+ 1

]
=⇒ Z(sinak) =

zsina

z2 − 2zcosa+ 1
.
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Example 3.2.9. Find the z-transform of the sequence {vk = cosak}∞k=0 .

Z(cosak) = Z(
eiak + e−iak

2
)

=
1

2
Z(eiak) +

1

2i
Z(e−iak)

=
1

2

∞∑
k=0

eiak

zk
+

1

2i

∞∑
k=0

e−iak

zk

=
1

2
[1 +

eia

z
+ (

eia

z
)2 + . . . ] +

1

2i
[1 +

e−ia

z
+ (

e−ia

z
)2 + . . . ]

=
1

2

[ 1

1− eia

z

]
+

1

2i

[ 1

1− e−ia

z

]
=

1

2

[ z

z − eia

]
+

1

2i

[ z

z − e−ia

]
=

1

2

[ z

z − eia
+

z

z − e−ia

]
=

1

2

[z(z − e−ia) + z(z − eia)

(z − eia)(z − e−ia)

]
=

1

2

[ z2 − ze−ia + z2 − zeia

z2 − ze−ia − zeia + eiae−ia

]
=

1

2

[ 2z2 − zeia − ze−ia

z2 − z(eia + e−ia) + 1

]
=

1

2

[ 2z2 − z(eia + e−ia)

z2 − z(eia + e−ia) + 1

]
=

1

2

[ 2z2 − 2zcosa

z2 − 2zcosa+ 1

]
=⇒ Z(cosak) =

z2 − zcosa

z2 − 2zcosa+ 1
.

Theorem 3.2.10. If Y (z) = Z(yk) for |z| > r, then

Z((k + n− 1)(n)yk) = (−)nzn
dnY

dzn
(z)for |z| > r.

Proof. By definition,

Y (z) =
∞∑
k=0

yk
zk

=
∞∑
k=0

ykz
−k

for |z| > r.
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Differentiating (3.2) with respect to z, we get

d

dz
Y (z) =

∞∑
k=0

(−k)ykz−(k+1)

=⇒ d2

dz2
Y (z) =

∞∑
k=0

(k)(k + 1)ykz
−(k+2)

=⇒ d3

dz3
Y (z) = −

∞∑
k=0

(k)(k + 1)(k + 2)ykz
−(k+3)

...

=⇒ dn

dzn
Y (z) = (−)n

∞∑
k=0

(k)(k + 1) . . . (k + n− 1)ykz
−(k+n)

=
(−1)n

zn

∞∑
k=0

(k + n− 1)(k + n− 2) . . . (k + 2)(k + 1)k

zk
yk

=
(−1)n

zn

∞∑
k=0

(k + n− 1)(n)

zk
yk

=⇒ dn

dzn
Y (z) =

(−1)n

zn
Z((k + n− 1)(n)yk)

=⇒ Z((k + n− 1)(n)yk) = (−1)nzn
dnY

dzn
(z).

Note: For n = 1, we get the special case Z(kyk) = −zY ′(z).

Example 3.2.11. Find Z(kak).

Z(kyk) = −z d
dz
Y (z)

= −z d
dz
Z(yk)

=⇒ Z(kak) = −z d
dz
Z(ak)

= −z d
dz

(
z

z − a
)

= −z
((z − a)− z

(z − a)2

)
= −z

( −a
(z − a)2

)
=⇒ Z(kak) =

az

(z − a)2
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Example 3.2.12. Find Z(k2).

The given problem can be written as Z(k2) = Z(k · k) .

Z(kyk) = −z d
dz
Y (z)

= −z d
dz
Z(yk)

=⇒ Z(k2) = −z d
dz
Z(k)

= −z d
dz

(
z

z − a
)

= −z (z − 1)2 − 2(z − 1)

(z − 1)4

=⇒ Z(k2) =
−z(z − 1)((z − 1)− 2z)

(z − 1)4

=
z(z − 1)(−1− z)

(z − 1)4

=⇒ Z(k2) =
z(z + 1)

(z − 1)3

Definition 3.2.13. Define the unit step sequence u(n) by

uk(n) =

{
0 if 0 ≤ k ≤ n− 1

1 if n ≤ k

Note: The unit step sequence has a single step of unit height located at k = n.

Theorem 3.2.14. Shifting Theorem

For n, a positive integer

Z(yk+n) = znZ(yk)−
n−1∑
m=0

ymz
n−m,

Z(yk−nuk(n)) = z−nZ(yk).

Proof. Consider

Z(yk+n) =
∞∑
k=0

yk+n

zk

=
∞∑
k=0

yk+nz
−k

=
∞∑
k=n

ykz
−k+n
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=⇒ Z(yk+n) = zn
∞∑
k=n

ykz
−k

= zn
[ ∞∑

k=0

ykz
−k −

n−1∑
m=0

ymz
−m
]

= zn
[ ∞∑

k=0

yk
zk

−
n−1∑
m=0

ymz
−m
]

= zn
[
Z(yk)−

n−1∑
m=0

ymz
−m
]

=⇒ Z(yk+n) = znZ(yk)−
n−1∑
m=0

ymz
n−m.

Now,

Z(yk−nuk(n)) =
∞∑
k=0

yk−nuk(n)

zk

=
∞∑
k=0

yk−nuk(n)z
−k

=
n−1∑
k=0

yk−nuk(n)z
−k +

∞∑
k=n

yk−nuk(n)z
−k

=
∞∑
k=n

yk−nuk(n)z
−k

=
∞∑
k=n

yk−nz
−k =

∞∑
k=0

ykz
−k−n

= z−n

∞∑
k=0

yk
zk

=⇒ Z(yk−nuk(n)) = z−nZ(yk).

Example 3.2.15. Find Z(uk(n)).

We know that Z(yk−nuk(n)) = z−nZ(yk).

Therefore,

Z(1 · uk(n)) = z−nZ(1)

= z−n

∞∑
k=0

1

zk

= z−n z

z − 1

=⇒ Z(uk(n)) =
z1−n

z − 1
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Example 3.2.16. Find Z(yk) if yk = 2, 0 ≤ k ≤ 99; yk = 5, 100 ≤ k.

Z(yk) =
∞∑
k=0

yk
zk

=
99∑
k=0

yk
zk

+
∞∑

k=100

yk
zk

=
99∑
k=0

2

zk
+

∞∑
k=100

5

zk

= 2
99∑
k=0

(1
z

)k
+ 5

∞∑
k=100

(1
z

)k
= 2

( (1
z
)k

1
z
− 1

)100
k=0

+ 5
( (1

z
)k

1
z
− 1

)∞
k=100

= 2
((1

z
)100z

1− z
− z

1− z

)
+ 5
((1

z
)∞z

1− z
−

(1
z
)100z

1− z

)
=⇒ Z(yk) =

−3z(1
z
)100

1− z
− 2z

1− z

=
3z

z100(z − 1)
+

2z

z − 1

=
3

z99(z − 1)
+

2z

z − 1

=
3 + 2zz99

z99(z − 1)

=⇒ Z(yk) =
3 + 2z100

z99(z − 1)
.

Theorem 3.2.17. For any integer n ≥ 0,

Z((k + n− 1)(n)) =
n!zn

(z − 1)n+1
,

Z(k(n)) =
n!z

(z − 1)n+1
for |z| > 1.

Proof. We know that Z((k + n− 1)(n)yk) = (−1)nzn dn

dzn
Y (z) .

Let yk = 1. Then

Z((k + n− 1)(n)) = (−1)nzn
dn

dzn
y(z)

= (−1)nzn
dn

dzn
Z(yk)

= (−1)nzn
dn

dzn
Z(1)

= (−1)nzn
dn

dzn

( z

z − 1

)
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= (−1)nzn
dn

dzn
(−1)nn!

(z − 1)n+1

=
n!zn

(z − 1)n+1

Now, we know that

Z(yk+n) = znZ(yk)−
n−1∑
m=0

ymz
n−m.

=⇒ Z((k + n− 1)(n)) = zn−1Z(kn)−
n−2∑
m=0

mnzn−1−m

=⇒ n!zn

(z − 1)n+1
= zn−1Z(kn)

−
n−2∑
m=0

m(m− 1) . . . (m− n+ 2)(m− n+ 1)zn−1−m

=⇒ zn−1Z(k(n)) =
n!zn

(z − 1)n+1

=⇒ Z(k(n)) =
n!z

(z − 1)n+1
for |z| > 1.

Theorem 3.2.18. (Initial and Final value Theorem)

(a) If Y(z) exists for |z| > r, then y0 = lim
z→∞

Y (z).

(b) If Y(z) exists for |z| > 1 and (z-1)Y(z) is analytic at z=1, then

lim
k→∞

yk = lim
z→1

(z − 1)Y (z).

Proof. (a) From the definition of z-transform,

Y (z) =
∞∑
k=0

yk
zk

= y0 +
y1
z

+
y2
z2

+ · · · .

Taking limits on both sides, lim
z→∞

Y (z) = y0.

(b) Consider

Z(yk+1) =
∞∑
k=0

yk+1z
−k −

∞∑
k=0

ykz
−k

= lim
n→∞

[ n∑
k=0

yk+1z
−k −

n∑
k=0

ykz
−k
]
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Z(yk+1) = lim
n→∞

[
(y1 + y2z

−1 + y3z
−2 + · · ·+ yn+1z

−n)

− (y0 + y1z
−1 + y2z

−2 + · · ·+ ynz
−n)
]

= lim
n→∞

[
y0 + y1(1− z−1) + y2(z

−1 − z−2) + . . .

+yn(z
(−n−1) − z−n) + yn+1z

−n)
]
.

Thus

lim
z→1

Z(yk+1 − yk) = lim
n→∞

[−y0 + yn+1].

From the Shifting theorem,

lim
z→1

[zY (z)− zy0 − Y (z)] = lim
k→∞

[yk − y0]

=⇒ lim
z→1

[(z − 1)Y (z)]− y0 = lim
k→∞

yk − y0

=⇒ lim
z→1

[(z − 1)Y (z)] = lim
k→∞

yk.

Hence the theorem.

Example 3.2.19. Verify the above theorem for the sequence yk = 1 .

For (a),

1 = y0 = lim
z→∞

Z(1)

and

lim
z→∞

Y (z) = lim
z→∞

Z(yk)

= lim
z→∞

Z(1)

= lim
z→∞

z

z − 1

= lim
z→∞

z

z(1− 1
z
)

= lim
z→∞

1

(1− 1
z
)

lim
z→∞

Y (z) = 1.

Hence (a) is verified.
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For (b),

lim
k→∞

yk = lim
k→∞

1 = 1

and lim
z→1

[(z − 1)Y (z)] = lim
z→1

[(z − 1)Z(yk)]

= lim
z→1

[(z − 1)Z(1)]

= 0 + lim
z→1

(z − 1)
z

z − 1

= lim
z→1

z

= 1.

Hence (b) is verified.

Theorem 3.2.20. If Z(yk) = Y (z) for |z| > r, then for constants a ̸= 0, Z(akyk) = Y ( z
a
)

for |z| > r|a|.

Proof. By the definition of z-transform,

Z(akyk) =
∞∑
k=0

akyk
zk

=
∞∑
k=0

yk
( z
a
)k

= Y (
z

a
).

Example 3.2.21. Find Z(3ksin4k).

We know that,

Z(sin4k) =
zsin4

z2 − 2zcos4 + 1

=⇒ Z(3ksin4k) =
(z/3)sin4

(z/3)2 − 2(z/3)cos4 + 1

=
(z/3)sin4

(z2/9)− 2(z/3)cos4 + 1

=⇒ Z(3ksin4k) =
3zsin4

z2 − 6zcos4 + 9

Example 3.2.22. Solve the following initial value problem using z-transform

yk+1 − 3yk = 4,

y0 = 1.
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Taking the z-transform on both sides we get,

Z(yk+1)− 3Z(yk) = 4Z(1)

=⇒ zZ(yk)− zy0 − 3Z(yk) = 4
z

z − 1

=⇒ zY (z)− zy0 − 3Y (z) =
4z

z − 1

=⇒ zY (z)− z − 3Y (z) =
4z

z − 1
here y0 = 1

=⇒ Y (z)(z − 3) = z +
4z

z − 1

=⇒ Y (z)(z − 3) =
z2 − z + 4z

z − 1

=⇒ Y (z) =
z2 + 3z

(z − 1)(z − 3)

=
z(z + 3)

(z − 1)(z − 3)

= z
[ −2

z − 1
+

3

z − 3

]
=

−2z

z − 1
+

3z

z − 3

Y (z) = −2Z(1) + 3Z(3k)

=⇒ Z(yk) = −2Z(1) + 3Z(3k)

=⇒ yk = −2 + 3 · 3k

=⇒ yk = −2 + 3k+1.

Example 3.2.23. Solve the initial value problem

yk+1 − 3yk = 3k,

y0 = 2.

Taking the z-transform on both sides we get,

Z(yk+1)− 3Z(yk) = Z(3k)

=⇒ zY (z)− zy0 − 3Y (z) =
z

z − 3

=⇒ zY (z)− 2z − 3Y (z) =
z

z − 3
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=⇒ zY (z)(z − 3) = 2z +
z

z − 3

=
2z2 − 6z + z

(z − 3)2

=⇒ Y (z) =
2z2 − 5z

(z − 3)2

=
z(2z − 5)

(z − 3)2

=⇒ Y (z) = z
[ 2

z − 3
+

1

(z − 3)2

]
=⇒ Y (z) =

2z

z − 3
+

1

3
· 3z

(z − 3)2

=⇒ Z(yk) = 2Z(3k) +
1

3
Z(k3k)

=⇒ yk = 2 · 3k + 1

3
k3k.

Result: Use the binomial theorem to show that

Z
(( r

k

))
=
(

z+1
z

)r
, |z| > 1.

Z
(( r

s

))
=

∞∑
k=0

(
r
k

)
zk

=

(
r
0

)
+

(
r
1

)
z

+

(
r
2

)
z2

+ · · ·+

(
r
r − 1

)
zr−1

+

(
r
r

)
zr

= 1 +

(
r
1

)
z

+

(
r
2

)
z2

+ · · ·+

(
r
r − 1

)
zr−1

+
1

zr

= 1 +

(
r
1

)
1

z
+

(
r
2

)
1

z2
+ · · ·+

(
r
r − 1

)
1

zr−1
+

1

zr

= 1 + r · 1
z
+
r(r − 1)

2!

1

z2
+ · · ·+ r · 1

zr−1
+

1

zr

(3.12)

=
1

zr

[
zr + rzr−1 +

r(r − 1)

2!
zr−2 + · · ·+ rz + 1

]
=

(1 + z)r

zr

Z
(( r

k

))
=

(1 + z

z

)r
.
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Example 3.2.24. Solve the initial value problem

(k + 1)yk+1 − (50− k)yk = 0,

y0 = 1.

Taking the z-transform on both sides we get,

Z((k + 1)yk+1)− 50Z(yk) + Z(kyk) = 0. (3.13)

Now, let us consider,

Z(y − k + 1) =
∞∑
k=0

yk+1

zk

=⇒ zZ(yk)− zy0 =
∞∑
k=0

yk+1

zk

=⇒ z(Z(yk)− y0) =
∞∑
k=0

yk+1

zk

=⇒ Z(yk)− 1 =
∞∑
k=0

yk+1

zk+1
.

On differentiating, we get

d

dz
(Z(yk)− 1) =

d

dz

∞∑
k=0

yk+1

zk+1

=⇒ d

dz
(Z(yk)− 1) = −

∞∑
k=0

yk+1(k + 1)z−(k+2)

=⇒ Y ′(z) = = −
∞∑
k=0

yk+1(k + 1)z−kz−2

=⇒ z2Y ′(z) = −
∞∑
k=0

(k + 1)
yk+1

zk

=⇒ −z2Y ′(z) = Z((k + 1)yk+1)

=⇒ z[−zY ′(z)] = Z((k + 1)yk+1)

=⇒ z[Z(kyk)] = Z((k + 1)yk+1). (3.14)

Substituting (3.14) in (3.13), we get

zZ(kyk)− 50Z(yk) + (−zY ′(z)) = 0

=⇒ z(−zY ′(z))− 50Y (z) + (−zY ′(z)) = 0

=⇒ −z2Y ′(z)− 50Y (z)− zY ′(z) = 0

99



=⇒ −(z2 + z)Y ′(z) = 50Y (z)

=⇒ −z(z + 1)Y ′(z) = 50Y (z)

=⇒ Y ′(z)

Y (z)
=

−50

z(z + 1)

= −50
[1
z
− 1

z + 1

]
=⇒ Y ′(z)

Y (z)
=

−50

z
− 50

z + 1
.

On integrating, we get

logY (z) = −50logz + 50log(z + 1)

=⇒ logY (z) = log
(z + 1

z

)50
=⇒ Y (z) =

(z + 1

z

)50
=⇒ Z(yk) =

(z + 1

z

)50
.

By using the above result,

Z(yk) = Z
(( 50

k

))
yk =

(
50
k

)
.

Example 3.2.25. Solve the second order initial value problem

yk+2 + yk = 10 · 3k,

y0 = 0, y1 = 0.

Taking the z-transform on both sides we get,

Z(yk+2) + Z(yk) = 10Z(3k)

=⇒ z2Z(yk)− y0z
2 − y1z + Z(yk) = 10

z

z − 3

=⇒ (z2 + 1)Z(yk) = 10
z

z − 3

=⇒ Z(yk) = 10
z

(z2 + 1)(z − 3)

=⇒ Z(yk) = 10
[ A

z − 3
+
Bz + 3

z2 + 1

]
= z

[ 1

z − 3
− z + 3

z2 + 1

]
=

z

z − 3
− z2 + 3z

z2 + 1
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=
z

z − 3
− z2

z2 + 1
− 3z

z2 + 1

= Z(3k)− z2 − zcosπ/2

z2 − 2zcosπ/2 + 1
− 3zsinπ/2

z2 − 2zcosπ/2 + 1

= Z(3k)− z(z − cosπ/2)

z2 − 2zcosπ/2 + 1
− 3zsinπ/2

z2 − 2zcosπ/2 + 1

=⇒ Z(yk) = Z(3k)− Z(cos(π/2)k)− 3Z(cos(π/2)k)

=⇒ yk = 3k − cos(π/2)k − 3cos(π/2)k.

Example 3.2.26. Solve the system,

uk+1 − vk = 3k3k (3.15)

uk + vk+1 − 3vk = k3k (3.16)

u0 = 0, v0 = 3.

Taking z-transform on both sides of equations (3.15) and (3.16), we have

Z(uk+1)− Z(vk) = Z(k3k)

=⇒ zU(z)− zu0 − V (z) = 3
3z

(z − 3)2

=⇒ zU(z)− V (z) =
9z

(z − 3)2
(3.17)

and Z(uk) + Z(vk+1)− 3Z(vk) = Z(k3k)

=⇒ U(z) + zV (z)− zv0 − 3V (z) =
3z

(z − 3)2

=⇒ U(z) + zV (z)− 3z − 3V (z) =
3z

(z − 3)2

=⇒ U(z) + (z − 3)V (z)− 3z =
3z

(z − 3)2
. (3.18)

Multiplying z − 3 on both sides of equation (3.17), we get

z(z − 3)U(z)− (z − 3)V (z) =
9z

z − 3
. (3.19)

Adding (3.18) and (3.19), we get

U(z) + z(z − 3)U(z)− 3z =
3z

(z − 3)2
+

9z

(z − 3)

=⇒ (1 + z2 − 3z)U(z) = 3z +
3z

(z − 3)2
+

9z

(z − 3)

=⇒ (1 + z2 − 3z)U(z) =
3z(z − 3)2 + 3z + 9z(z − 3)

(z − 3)2
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=
3z(z2 − 6z + 9) + 3z + 9z2 − 27z

(z − 3)2

=
3z3 − 18z2 + 27z + 3z + 9z2 − 27z

(z − 3)2

=
3z3 − 9z2 + 3z

(z − 3)2

=⇒ (z2 − 3z + 1)U(z) =
3z(z2 − 3z + 1)

(z − 3)2

=⇒ U(z) =
3z

(z − 3)2

=⇒ Z(uk) = Z(k3k)

=⇒ uk = k3k.

Equation (3.15) becomes

(k + 1)3k+1 − vk = 3k3k

−vk = 3k3k − (k + 1)3k + 1

−vk = 3k3k+1 − k3k + 1− 3k+1

−vk = −3k+1

=⇒ vk = 3k+1.

Example 3.2.27. Solve the system,

uk+1 − vk = −1 (3.20)

−uk + vk+1 = 3 (3.21)

u0 = 0, v0 = 2

Taking z-transform on both sides of equations (3.15) and (3.16),

Z(uk+1)− Z(vk) = −Z(1)

zU(z)− zu0 − V (z) = − z

z − 1

zU(z)− V (z) =
z

z − 1
(3.22)

−Z(uk) + Z(vk+1) = 3Z(1)

−U(z) + zV (z)− zv0 =
3z

z − 1

−U(z) + zV (z)− 2z =
3z

z − 1

−U(z) + (z − 3)V (z) =
3z

z − 1
+ 2z (3.23)
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Multiplying z on both sides by equation (3.22), we get

z2U(z)− zV (z) =
3z2

z − 1
(3.24)

Adding (3.22) and (3.23), we get

(z2 − 1)U(z) =
3z

z − 1
− z2

z − 1
+ z

=⇒ (z2 − 1)U(z) =
3z − z2 + 2z2 − 2z

z − 1

=⇒ (z2 − 1)U(z) =
z2 + z

z − 1

=⇒ U(z) =
z(z + 1)

(z − 1)(z2 − 1)

=⇒ U(z) =
z

(z − 1)2

=⇒ Z(uk) = Z(k)

=⇒ uk = k.

Equation (3.20) becomes

(k + 1)− vk = −1

=⇒ −vk = −1− k − 1

=⇒ vk = k + 2.

Definition 3.2.28. Unit impulse sequence δ(n), n ≥ 1 is defined by

δk(n) =

{
1 if k = n

0 if k ̸= n.

Taking z-transform, we get

Z(δk(n)) =
∞∑
k=0

δk(n)

zk
=

1

zn
.

Example 3.2.29. Solve the initial value problem

yk+1 − 2yk = 3δk(4),

y0 = 1.
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Taking z-transform on both sides, we get

Z(yk+1)− 2Z(yk) = 3Z(δk(4))

=⇒ zY (z)− zy0 − 2Y (z) = 3
1

z4

=⇒ zY (z)− z − 2Y (z) =
3

z4

=⇒ (z − 2)Y (z) =
3

z4
+ z

=⇒ Y (z) =
3

z4(z − 2)
+

z

z − 2

=
3z

z5(z − 2)
+

z

z − 2

=⇒ Y (z) = 3z−5 z

(z − 2)
+

z

z − 2

=⇒ Z(yk) = Z(2k) + 3z−5Z(2k)

=⇒ Z(yk) = Z(2k) + 3Z(2k−5uk(5))

=⇒ yk = 2k + 3 · 2k−5uk(5)

We do write yk as

yk =

{
2k if 0 ≤ k ≤ 4

2k + 3 · 2k−5 if k ≥ 5

Definition 3.2.30. The convolution of two sequences {uk} and {vk} is defined by

{uk} ∗ {vk} =

{ k∑
m=0

uk−mvm}

We write uk ∗ vk =
∑k

m=0 uk−mvm.

Theorem 3.2.31. Convolution Theorem

If U(z) exists for |z| > a and V(z) exists for |z| > b, then

Z(uk ∗ vk) = U(z)V (z)

for |z| > max{a, b}.

Proof. For |z| > max{a, b},

U(z)V (z) =
∞∑
k=0

uk
zk

∞∑
k=0

vk
zk

=
[
u0 +

u1
z

+
u2
z2

+ . . .
][
v0 +

v1
z

+
v2
z2

+ . . .
]
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= u0v0 + (u0v1 + u1v0)
1

z
+ (u0v2 + u1v1 + u2v0)

1

z2
+ . . .

+(u0vk + u1vk−1 + u2vk−2 + . . . ukv0)
1

zk
+ . . .

=
∞∑
k=0

k∑
m=0

uk−mvm
zk

=
∞∑
k=0

uk ∗ vk
zk

=⇒ U(z)V (z) = Z(uk ∗ vk).

Corollary 3.2.32. If Z(yk) exists for |z| > r, then Z(
∑k

m=0 ym) = z
z−1

Z(yk) for |z| >

max{1, r}

Proof. Take uk = 1 in
∑k

m=0 uk−mvm = uk ∗ vk.

Then
∑k

m=0 1ym = 1 ∗ yk i.e.,
∑k

m=0 ym = 1 ∗ yk.

Taking z-transform on both sides, we get

Z(
k∑

m=0

ym) = Z(1 ∗ yk)

= 1(z)Y (z)

= Z(1)Z(yk)

=
z

z − 1
Z(yk).

Example 3.2.33. Find Z(
∑k

m=0 3
m)

By the above corollary,

Z(
k∑

m=0

3m) =
z

z − 1
Z(3k)

=
z

z − 1

z

z − 3

=
z2

(z − 1)(z − 3)
, (|z| > 3)

The Volterra Summation Equation of convolution type

Consider the Volterra Summation Equation of Convolution type

yk = fk +
k−1∑
m=0

uk−m−1ym, (k ≥ 0) (3.25)
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where fk and uk−m−1 are given. The term uk−m−1 is called the kernal of the summation

equation. The equation is said to be homogeneous if fk ≡ 0 and non-homogeneous

otherwise. Such an equation can often be solved by use of the z-transform.

To see this, replace k by k+1 in (3.25). Then

yk+1 = fk+1 +
k∑

m=0

uk−mym

=⇒ yk+1 = fk+1 + uk ∗ yk

Taking the z-transform on both sides and put y0 = f0, we get

Z(yk+1) = Z(fk+1) + Z(uk ∗ yk)

=⇒ zY (z)− zy0 = zF (z)− zf0 + U(z)Y (z)

=⇒ zY (z)− zf0 = zF (z)− zf0 + U(z)Y (z)

=⇒ zY (z) = zF (z) + U(z)Y (z)

=⇒ zY (z)− U(z)Y (z) = zF (z)

=⇒ (z − U(z))Y (z) = zF (z)

=⇒ Y (z) =
zF (z)

z − U(z)
.

Example 3.2.34. Solve the Volterra summation equation

yk = 1 + 16
k−1∑
m=0

(k −m− 1)ym, k ≥ 0. (3.26)

Replacing k by k+1,

yk+1 = 1 + 16
k∑

m=0

(k −m)ym

=⇒ yk+1 = 1 + 16k ∗ yk.

Taking the z-transform on both sides, we get

Z(yk+1) = Z(1 + 16(k ∗ yk))

=⇒ Z(yk+1) = Z(1) + 16Z(k ∗ yk))

=⇒ zY (z)− zy0 =
z

z − 1
+ 16Z(k)Z(yk)
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=⇒ zY (z)− zy0 =
z

z − 1
+ 16

z

(z − 1)2
Z(yk)

=⇒ Y (z)− y0 =
1

z − 1
+ 16

1

(z − 1)2
Z(yk)

=⇒ (1− 16

(z − 1)2
)Y (z) = 1 +

z

z − 1

=⇒
[z2 − 2z + 1− 16

(z − 1)2

]
Y (z) =

z − 1 + 1

z − 1

=⇒
[z2 − 2z − 15

(z − 1)2

]
Y (z) =

z

z − 1

=⇒ (z2 − 2z − 15)Y (z) = z(z − 1)

=⇒ Y (z) =
z(z − 1)

z2 − 2z − 15

=
z(z − 1)

(z − 5)(z + 3)

= z
[ 1

2

(z − 5)
+

1
2

(z + 3)

]
=⇒ Y (z) =

z

2(z − 5)
+

z

2(z + 3)

=⇒ Z(yk) =
1

2
Z(5k) +

1

2
Z((−3)k)

=⇒ yk =
1

2
5k +

1

2
(−3)k

The Fredholm Summation Equation

Theorem 3.2.35. The Fredholm equation

yk = fk +
b∑

m=a

Kk,mym, (a ≤ k,m ≤ b) (3.27)

where a and b are integers and fk is sequence, with a separable kernal

Kk,m =

p∑
i=1

αi(k)βi(m), (a ≤ k,m ≤ b)

has a solution yk iff

(I − A)c = u (3.28)

has a solution c. If c = [c1, c2, . . . , cp]
T is a solution of equation (3.28), then a corre-

sponding solution yk of equation (3.27) is given by

yk = fk +

p∑
i=1

ciαi(k), (a ≤ k ≤ b)

where I is a p× p identity matrix.
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Proof. Substitute the expression for Kk,m in equation (3.27), we get

yk = fk +
b∑

m=a

p∑
i=1

αi(k)βi(m)ym

=⇒ yk = fk +

p∑
i=1

αi(k)(
b∑

m=a

βi(m)ym)

yk = fk +

p∑
i=1

αi(k)ci, (3.29)

where ci =
∑b

m=a βi(m)ym.

Multiplying by βj(k) on both sides of (3.29) and summing from a to b, we get

b∑
k=a

ykβj(k) =
b∑

k=a

βj(k)fk +

p∑
i=1

ci

b∑
k=a

αi(k)βj(k)

=⇒ cj = uj +

p∑
i=1

ajici, 1 ≤ j ≤ p (3.30)

where

cj =
∑b

k=a ykβj(k),

uj =
∑b

k=a βj(k)fk,

aji =
∑b

k=a αi(k)βj(k).

Let A be the p× p matrix, A = (aij).

Let c = [c1, c2, . . . , cp]
T and u = [u1, u2, . . . , up]

T .
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Then

u+ Ac =


u1
u2
...
up

+ [aij]


c1
c2
...
cp



=


u1
u2
...
up

+


a11 a12 · · · a1p
a21 a22 · · · a2p
...

...
...

...
ap1 ap2 · · · app




c1
c2
...
cp



=


u1
u2
...
up

+


∑p

i=1 a1ici∑p
i=1 a2ici

...∑p
i=1 apici



=


u1 +

∑p
i=1 a1ici

u2 +
∑p

i=1 a2ici
...
up +

∑p
i=1 apici



=


c1
c2
...
cp


(by equation (3.30)).

∴ u+ Ac =
(
c1 c2 . . . cp

)T
=⇒ u+ Ac = c

=⇒ u = c− Ac

=⇒ u = (I − A)c

Thus (I − A)c = u, where I is the p× p identity matrix.

Example 3.2.36. Solve the Fredholm summation equation

yk = 1 +
∑19

m=0(1 + km)ym, 0 ≤ k ≤ 19.

Comparing the given equation with equation (3.27), we get δk = 1, Kk,m = 1 + km,

a = 0, b = 19.

=⇒ α1(k) = 1, β1(m) = 1, α2(k) = k, β2(m) = m.
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We know that,

aij =
b∑

k=a

αj(k)βi(k).

=⇒

a11 =
19∑
k=a

1 · 1 = 20,

a12 =
19∑
k=a

k · 1 =
19× (19 + 1)

2
= 190,

a21 =
19∑
k=a

k · 1 =
19× (19 + 1)

2
= 190,

a22 =
19∑
k=a

k · k =
19× (19 + 1)× (2× 19 + 1)

6
=

19× 20× 39

6
= 2470.

Now,

uj =
b∑

k=a

fkβj(k)

=⇒

u1 =
19∑
k=0

1 · 1 = 20,

u2 =
19∑
k=0

1 · k = 190.

∴ A =

(
a11 a12
a21 a22

)
=

(
20 190
190 2470

)
,

u =

(
u1
u2

)
=

(
20
190

)

Substituting A and u in equation (3.28), we have

[( 1 0
0 1

)
−
(

20 190
190 2470

)]( c1
c2

)
=

(
20
190

)

(
−19 −190
−190 −2469

)(
c1
c2

)
=

(
20
190

)
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−19c1 − 190c2 = 20 (3.31)

−190c1 − 2469c2 = 190 (3.32)

10× ((3.31))− ((3.32)) =⇒ 569c2 = 10 =⇒ c2 =
10
569
.

Substituting c2 in (3.31), we get

−19c1 =
13280
569

=⇒ c1 = −13280
10811

. Therefore,

yk = fk +

p∑
i=1

ciαi(k)

= c1α1(k) + c2α2(k)

= 1− 13280

10811
+

10

569
k

=
−2469

10811
+

10

569
k, 0 ≤ k ≤ 19.

Example 3.2.37. Solve the Fredholm summation equation

yk = 2 + λ
∑29

m=0
m
29
ym, 0 ≤ k ≤ 29,

for all values of λ.

Comparing the given equation with equation (3.27),

we get fk = 2, Kk,m = m
29
λ, a = 0, b = 29 which implies α1(k) = λ and β1(m) = m

29
.

From

aij =
b∑

k=a

αj(k)βi(k),

a11 =
29∑

m=a

λm

29
=

λ

29

29∑
k=a

m

=
λ

29
× 29× 30

2

= 15λ

and from uj =
b∑

k=a

fkβj(k),

u1 =
29∑

m=0

1
2m

29

=
2

29
× 29× 30

2

= 30.
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Substituting all the values in (I − A)c = u, we get

(1− 15λ)c = 30

=⇒ c =
30

1− 15λ
, λ ̸= 1

15

yk = 2 +
30

1− 15λ

∴ yk =
2

1− 15λ

Remark 3.2.38. Consider the homogeneous Fredholm equation

yk = λ

b∑
m=a

Kk,mym, a ≤ k ≤ b (3.33)

where λ is a parameter. We say that λ0 is an eigenvalue of this equation, provided that

for this value of λ, there is a nontrivial solution yk, called an eigensequence. We say that

(λ0, yk) is an eigenpair for Eq.(3.33). Note that λ = 0 is not an eigenvalue. We say that

Kk,m is symmetric provided that

Kk,m = Km,k

for a ≤ k,m ≤ b. Several properties of eigenpairs for Eq.(3.33) with a symmetric kernel

are given in the following theorem.

Theorem 3.2.39. If Kk,m is real and symmetric, then all the eigenvalues of Eq. (3.33)

are real. If (λi, uk) (λj, vk) are eigenpairs with λi ̸= λj, then uk and vk are orthogonal;

that is,
b∑

k=a

ukvk = 0

We can always pick a real eigensequence that corresponds to each eigenvalue.

Proof. Let (µ, uk) , (ν, vk) be eigenpairs of Eq. (3.33). Then µ, v ̸= 0. Since

( µ, uk) is an eigenpair for Eq. (3.33),

uk = µ

b∑
m=a

Kk,mum
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Multiplying by vk and summing from a to b, we obtain

b∑
k=a

ukvk = µ
b∑

k=a

b∑
m=a

Kk,mumvk

= µ
b∑

m=a

(
b∑

k=a

Km,kvk

)
um

=
µ

v

b∑
m=a

vmum

since (v, vk) is an eigenpair for Eq. (3.33). It follows that

(v − µ)
b∑

k=a

ukvk = 0 (3.34)

If µ ̸= ν, we get the orthogonality result

b∑
k=a

ukvk = 0

If (λi, yk) is an eigenpair of Eq. (3.33), then
(
λ̄i, ȳk

)
is an eigenpair of Eq. (3.33). With

(µ, uk) = (λi, yk) and (ν, vk) =
(
λ̄i, ȳk

)
, Eq. (3.34) becomes

(λ̄− λ)
b∑

k=a

ykȳk = 0

It follows that λ = λ̄, and hence every eigenvalue of Eq. (3.33) is real.

z-transforms of some functions

Sequence Z-transform
1 z

z−1

ak z
z−a

k z
(z−1)2

k2 z(z+1)
(z−1)3

kn n!(z+1)
(z−1)n+1

sinak zsina
z2−2zcosa+1−1

cosak z2−zcosa
z2−2zcosa+1

sinhak zsinha
z2−2zcosha+1

coshak z2−zcosha
z2−2zcosha+1

δk(n)
1
zn

uk(n)
zn−1

(z−1)

uk ∗ vk U(z)V (z)∑k
m=0 yi

z
(z−1)

Y (z)

akyk Y
(

z
a

)
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Let Us Sum Up:

In this section, we have discussed the following concepts:

1. z-transform of a sequence

2. Exponentially bounded sequence

3. Linearity Theorem

4. Shifting theorem

5. Initial value and final value theorem

6. Solving initial value problems using z-transforms

7. Convolution Theorem

8. Solving the Volterra summation equation

9. Solving the Fredholm summation equation

Check your Progress:

1. The z− transform of the sequence {yk = 1} is .............

(A) z−1
z

(B) z
z−1

(C) z
z+1

(D) None of these

2. If the sequence {yk} is exponentially bounded , then the z-transform of {yk}

(A) converges (B) does not exists (C) is unbounded (D) diverges

3. Z(kak) =..............

(A) z
z−a

(B) az
z−a

(C) az
(z−a)2

(D) None of these

Unit Summary:

In this unit, several methods are given for solving certain difference equations with

variable coefficients and some summation equations.

Glossary:

• Z (yk) or Y (z) - The z-transform of a sequence {yk}

• δ(n) -The unit impulse sequence

• {uk} ∗ {vk} -The convolution of the sequences {uk} and {vk}
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Self-Assessment Questions:

1. Find the general solution of

(E − (t+ 1))(E + 1)u(t) = 0.

2. Check that un = 2n solves

nun+2 − (1 + 2n)un+1 + 2un = 0

and find a second independent solution.

3. Find the z-transform of each of the following:

(a) yk = 2 + 3k.

(b) uk = 3k cos 2k.

(c) vk = sin(2k − 3).

(d) yk = k3.

(e) uk = 3yk+3.

(f) vk = k cos kπ
2

.

(g) yk = 1
k!

.

(h) uk =

{
(−1)

k
2

(k+1)!
k even

0, k odd.

Exercises:

1. Solve the equation y(t+ 2) + (2t− 1)y(t+ 1)− 6ty(t) = 0 by factoring.

2. Use the method of reduction of order to solve the difference equation un+2−

5un+1 + 6un = 0, given that un = 3n is a solution.

3. Use the method of generating functions to solve

3(n+ 2)un+2 − (3n+ 4)un+1 + un = 0

if u0 = 3u1.
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4. Solve the first order initial value problem yk+1 − 3yk = 4k, y0 = 0 using z-

transforms.

5. Solve the second order initial value problem yk+2−5yk+1+6yk = 0, y0 = 1, y1 = 0

using z-transforms.

6. Solve the system using z-transforms:

uk+1 − 2vk = 2 · 4k

−4uk + vk+1 = 4k+1

u0 = 2, v0 = 3.

7. Solve the Fredholm summation equation: yk = 10 +
∑20

m=0 kmym.

Answers for check your progress:

Section 3.1 1. (B) 2. (C) 3. (B)

Section 3.2 1. (B) 2. (A) 3. (C)

References:

1. W.G. Kelley and A.C. Peterson, “Difference Equations”, 2nd Edition, Academic

Press, New York, 2001.

Suggested Reading:

1. R.P. Agarwal, “Difference Equations and Inequalities”, 2nd Edition, Marcel Dekker,

New York, 2000.

2. S.N. Elaydi, “An Introduction to Difference Equations”, 3rd Edition, Springer,

India, 2008.

3. R. E. Mickens, “Difference Equations”, 3rd Edition, CRC Press, 2015.
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Unit 4

Stability Theory

Objectives:

This unit deals with initial value problems and stability theory for homogeneous

linear systems.

4.1 Initial Value Problems for Linear Systems

Consider systems of the form

u1(t+ 1) = a11(t)u1(t) + · · ·+ a1n(t)un(t) + f1(t)

u2(t+ 1) = a21(t)u1(t) + · · ·+ a2n(t)un(t) + f2(t)

...

un(t+ 1) = an1(t)u1(t) + · · ·+ ann(t)un(t) + fn(t)

for t = a, a+1, a+2, · · · . This system can be written as an equivalent vector equation,

u(t+ 1) = A(t)u(t) + f(t), (4.1)

where u(t) =


u1(t)
u2(t)

...
un(t)

 , f(t) =


f1(t)
f2(t)

...
fn(t)

 and

A(t) =


a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

...
...

an1(t) an2(t) · · · ann(t)

 .
The study of (4.1) includes the nth order scalar equation

pn(t)y(t+ n) + · · ·+ p0(t)y(t) = r(t) (4.2)
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as a special case. To see this, let y(t) solve (4.2) and define

ui(t) = y(t+ i− 1)

for 1 ≤ i ≤ n, t = a, a+ 1, . . . . That is,

u1(t) = y(t)

u2(t) = y(t+ 1)

...

un−1(t) = y(t+ n− 2)

un(t) = y(t+ n− 1),

and ui(t+ 1) = y(t+ i), and so

u1(t+ 1) = y(t+ 1) = u2(t)

u2(t+ 1) = y(t+ 2) = u3(t)

...

un−1(t+ 1) = y(t+ n− 1) = un(t)

un(t+ 1) = y(t+ n).

From (4.2), we have

y(t+ n) = −p0(t)
pn(t)

y(t)− p1(t)

pn(t)
y(t+ 1)− · · · − pn−1(t)

pn(t)
y(t+ n− 1) +

r(t)

pn(t)

= −p0(t)
pn(t)

u1(t)−
p1(t)

pn(t)
u2(t)− · · · pn−1(t)

pn(t)
un(t) +

r(t)

pn(t)
u1(t+ 1)
u2(t+ 1)

...
un(t+ 1)

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

−p0(t)
pn(t)

− p1(t)
pn(t)

− p2(t)
pn(t)

· · · −pn−1(t)
pn(t)



u1(t)
u2(t)

...
un(t)

+


0
0
...

r(t)
pn(t)


Then the vector function u(t) with components u1(t) satisfies equation (4.1) if

A(t) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

− p0(t)
pn(t)

p1(t)
pn(t)

− p2(t)
pn(t)

· · · −pn−1(t)
pn(t)

 and f(t) =


0
0
...

r(t)
pn(t)

 (4.3)

The matrix A(t) in the above equation is called “Companian Matrix" of equation (4.2).

Conversely, if u(t) solves (4.1) with A(t) and f(t) given in Eq. (4.3), then y(t) = u1(t)

is a solution of (4.2). So, we have the following theorem.
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Theorem 4.1.1. For each t0 in {a, a + 1, · · · } and each n-vector u0, (4.1) has a unique

solution u(t) defined for t = t0, t0 + 1, · · · , so that u (t0) = u0.

Remark: Assume that A is independent of t (i.e., all coefficients in the system are

constants) and f(t) = 0. Then the solution u(t) of

u(t+ 1) = Au(t) (4.4)

satisfying the initial condition u(0) = u0, is u(t) = Atu0, (t = 0, 1, 2, · · · ). Hence the

solutions of (4.4) can be found by calculating powers of A.

Definition 4.1.2. The equation

Au = λu (4.5)

where λ is a parameter, always has the trivial solution u = 0. If (4.5) has a nontrivial

solution u for some λ, then λ is called an eigenvalue of A and u is called a corresponding

eigenvector of A.

Note: The eigenvalues of A satisfy the characteristic equation det(λI −A) = 0, where

I is the n by n identity matrix.

Definition 4.1.3. An eigenvalue is said to be simple if its multiplicity as a root of the

characteristic equation is one.

Definition 4.1.4. The spectrum of A, denoted σ(A), is the set of eigenvalues of A, and

the spectral radius of A is

r(A) = max{|λ| : λ is in σ(A)}.

Example 4.1.5. Find the eigenvalues, eigenvectors, and spectral radius for

A =

[
0 1
−2 −3

]
.

The characteristic equation of A is

det(λI − A) = 0

=⇒ det

[
λ

(
1 0
0 1

)
−
(

0 1
−2 −3

)]
= 0

=⇒
∣∣∣∣ λ λ− 1
2 λ+ 3

∣∣∣∣ = 0

=⇒ λ2 + 3λ+ 2 = 0

∴ λ = −2, λ = −1.
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So, the eigen values are given by σ(A) = {−2,−1}.

To find the eigen vectors corresponding to λ = −2, we solve (λI − A)u = 0.

=⇒
[
−2

(
1 0
0 1

)
−
(

0 1
−2 −3

)][
u1
u2

]
=

[
0
0

]
.

The eigen vectors are all non-zero multiples of the vector with u1 = 1 and u2 = −2.

To find eigen vector corresponding to λ = −1; we solve (λI − A)u = 0.

=⇒
[
−1

[
1 0
0 1

]
−
[

0 1
−2 −3

]] [
u1
u2

]
=

[
0
0

]
=⇒

[
−u1 − u2
2u1 + 2u2

]
=

[
0
0

]
The eigen vectors corresponding to λ = −1 are all non-zero multiplies of the vector

with u1 = 1 and u2 = −1. Finally the spectral radius of A is

r(A) = max{| − 2|, | − 1|}.

=⇒ r(A) = 2.

Result: Let λ be an eigenvalue of A and let u be a corresponding eigenvector. For

t = 0, 1, 2, · · · , we have

Atu = λtu

so u(t) = λtu satisfies (4.4) with initial vector u. Also if u0 can be written as a linear

combination of the eigenvectors of A, say

u0 = b1u
1 + · · ·+ bku

k

where each ui is an eigenvector corresponding to λi, then the solution of (4.4) is

u(t) = b1λ
t
1u

1 + · · ·+ bkλ
t
ku

k. (4.6)

Thus, if A has n linearly independent eigenvectors (this is necessarily the case if A has

n distinct eigenvalues or if A is symmetric), then every solution of the system can be

calculated in above said way.

Example 4.1.6. Solve u(t+ 1) = Au(t) if A =

[
0 1
−2 −3

]
.

Let u0 =

[
u1
u2

]
be an initial vector and recall that

[
1
−2

]
is an eigenvector for λ = −2
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and
[

1
−1

]
is an eigenvector for λ = −1. Now, set

[
u1
u2

]
= b1

[
1
−2

]
+ b2

[
1
−1

]
=

[
1 1
−2 −1

] [
b1
b2

]
.

The solution of this linear system is[
b1
b2

]
=

[
1 1
−2 −1

]−1 [
u1
u2

]
=

[
−1 −1
2 1

] [
u1
u2

]
=

[
−u1 − u2
2u1 + u2

]
By (4.6), the solution of (4.4) with initial vector u0 is

u(t) = − (u1 + u2) (−2)t
[

1
−2

]
+ (2u1 + u2) (−1)t

[
1
−1

]
.

Result: The Cayley-Hamilton Theorem:

Every square matrix satisfies its characteristic equation.

Example 4.1.7. Verify the Cayley-Hamilton Theorem for

A =

[
1 2
3 4

]
.

The characteristic equation for A is

det

[
λ− 1 −2
−3 λ− 4

]
= λ2 − 5λ− 2 = 0.

Now

A2 − 5A− 2I =

[
1 2
3 4

] [
1 2
3 4

]
− 5

[
1 2
3 4

]
− 2

[
1 0
0 1

]
=

[
1 + 6 2 + 8
8 + 12 6 + 16

]
−
[

5 10
15 20

]
−
[
2 0
0 2

]
=

[
7 10
15 22

]
−
[
7 10
15 22

]
=

[
0 0
0 0

]
,

i.e., A satisfies its characteristic equation.

∴ Cayley Hamilton theorem is verified.
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Remark 4.1.8. Let A be n × n matrix. If λ1, · · · , λn are eigen values of A, then Cayley-

Hamilton Theorem implies thatAn can be written as a linear combination of I, A,A2, · · · , An−1.Thus,

every power of A also can be written as a linear combination of I, A,A2, · · · , An−1.

Let λ1, · · · , λn be the eigenvalues of A, with each eigenvalue repeated as many times

as its multiplicity. Define

M0 = I

Mi = (A− λiI)Mi−1, (1 ≤ i ≤ n). (4.7)

Then

M1 = (A− λ1I)M0

= (A− λ1I) I

= A− λ1I

M2 = (A− λ2I)M1

= (A− λ2I) (A− λ1I)

Similarly,M3 = (A− λ3I) (A− λ2I) (A− λ1I)

...

Mn = (A− λnI) (A− λn−1I) (A− λn−2I) · · · (A− λ1I) .

It follows from the Cayley-Hamilton Theorem that Mn = 0.

Theorem 4.1.9. The solution of u(t+1) = Au(t), where A is independent of t with initial

vector u0 is

u(t) =
n−1∑
i=0

ci+1(t)Miu0 = Atu0,

where the M ′
is are given by M0 = I,Mi = (A− λiI)Mi−1, (1 ≤ i ≤ n) and the ci(t), (i =

1, . . . , n) are uniquely determined by
c1(0)
c2(0)

...
cn(0)

 =


1
0
...
0

 (4.8)
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and

 c1(t+ 1)
...

cn(t+ 1)

 =


λ1 0 0 · · · 0
1 λ2 0 · · · 0
0 1 λ3 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 λn


 c1(t)

...
cn(t)

 . (4.9)

Proof. We know that the solution of u(t + 1) − Au(t) = 0 (with the initial condition

u(0) = u0) is given by

u(t) = u(0)
t−1∏
s=0

P (s)

= u(0)
t−1∏
s=0

A

= u0A
t.

Let us find At.

Now, by the definition of Mi, each Ai is a linear combination of M0, . . . ,Mi for i =

0, . . . , n − 1, and by the remark above, the same is true for every power of A. Then,

we can write

At =
n−1∑
i=0

ci+1(t)Mi

for t ≥ 0.
∴ u(t) = u0A

t

= u0

n−1∑
i=0

ci+1(t)Mi

=
n−1∑
i=0

ci+1(t)Miu0, t ≥ 0

where the ci+1(t) are to be determined. Since At+1 = A · At, we have

n−1∑
i=0

ci+1(t+ 1)Mi = A

n−1∑
i=0

ci+1(t)Mi

=
n−1∑
i=0

ci+1(t)AMi

=
n−1∑
i=0

ci+1(t) [Mi+1 + λi+1Mi]

=
n−1∑
i=1

ci(t)Mi +
n−1∑
i=0

ci+1(t)λi+1Mi ,
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where we have replaced i by i− 1 in the first sum and used the fact that Mn = 0.

The preceding equation is satisfied if the ci(t), (i = 1, . . . , n) are chosen to satisfy the

system,

 c1(t+ 1)
...

cn(t+ 1)

 =


λ1 0 0 · · · 0
1 λ2 0 · · · 0
0 1 λ3 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 λn


 c1(t)

...
cn(t)

 . (4.10)

Since

A0 = I = c1(0)I + c2(0)M1 + · · ·+ cn(0)Mn−1,

we must have 
c1(0)
c2(0)

...
cn(0)

 =


1
0
...
0

 . (4.11)

By Theorem 4.1.1, the initial value problem (4.10), (4.11) has a unique solution.

Hence the theorem.

Example 4.1.10. Solve

u(t+ 1) =

[
1 1
−1 3

]
u(t), u(0) =

[
α
β

]
.

Comparing the given equation with u(t+ 1) = Au(t), we get A =

[
1 1
−1 3

]
.

The characteristic equation is,

|λI − A| = 0, where I =

[
1 0
0 1

]
.

=⇒ λ

[
1 0
0 1

]
−
[

1 1
−1 3

]∣∣∣∣ = 0

=⇒
∣∣∣∣ λ− 1 −1

1 λ− 3

∣∣∣∣ = 0

=⇒ λ2 − 3λ− λ+ 3 + 1 = 0

=⇒ λ2 − 4λ+ 4 = 0 ⇒ λ = 2, 2

The matrix A has an eigen value λ = 2 of multiplicity 2.

By equation (4.7), M0 = I,M1 = A− 2I

∴M0 =

[
1 0
0 1

]
,M1 =

[
1 1

−1 3

]
−
[
2 0
0 2

]
=

[
−1 1
−1 1

]
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From equations (4.10) and (4.11),[
c1 (t+ 1)
c2 (t+ 1)

]
=

[
2 0
1 2

] [
c1 (t)
c2 (t)

]
and

[
c1(0)
c2(0)

]
=

[
1
0

]
.

=⇒ c1(t+ 1) = 2c1(t), c1(0) = 1,

c2(t+ 1) = c1(t) + 2c2(t), c2(0) = 0.

First, consider c1(t+ 1) = 2c1(t), c1(0) = 1.

=⇒ c1(t+ 1) = 2c1(t) = 0

=⇒ c1(t) = c1(0)
t−1∏
s=0

2

=⇒ c1(t) = 1 · 2t

=⇒ c1(t) = 2t.

Next, consider

c2(t+ 1) = 2c2(t) + c1(t), c2(0) = 0.

∴ c2(t+ 1) = 2c2(t) + 2t.

Then

c2(t) = t · 2t−1.

By Theorem (4.1.9), we have

u(t) = (c1(t)M0 + c2(t)M1)u0

= (c1(t)I + c2(t)M1)

[
α
β

]
=

(
2t
[
1 0
0 1

]
+ t2t−1

[
−1 1
−1 1

])[
α
β

]
= 2t

[
1− t

2
t
2

− t
2

1 + t
2

] [
α
β

]
.

Definition 4.1.11. A matrix ‘A’ is said to be nilpotent if At−1 ̸= 0 and At = 0 where

t ∈ Z+.

Example 4.1.12. Compute all powers of

A =

[
2 0
1 2

]
.

Write

At =

(
2I +

[
0 0
1 0

])t
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Now, since
[
0 0
1 0

]
is nilpotent and commutes with I, the binomial theorem yields,

At = 2tI t + t2t−1

[
0 0
1 0

]
= 2t

[
1 0
0 1

]
+ t2t−1

[
0 0
1 0

]
=

[
2t 0
0 2t

]
+

[
0 0

t2t−1 0

]
=

[
2t 0
t2t−1 2t

]
.

Finally, consider the nonhomogeneous system

u(t+ 1) = Au(t) + f(t) (4.12)

The next theorem is a variation of parameters formula for solving (4.12).

Theorem 4.1.13. The solution of (4.12) satisfying the initial condition u(0) = u0 is

u(t) = Atu0 +
t−1∑
s=0

At−s−1f(s). (4.13)

Proof. It is sufficient to show that (4.13) satisfies the initial value problem (4.12).

From equation (4.13),

u(0) = A0u0 +
−1∑
s=0

A−s−1f(s).

First we have
−1∑
s=0

A−s−1f(s) = 0

by the usual convention, so u(0) = u0.

For t ≥ 1,

u(t+ 1) = At+1u0 +
t∑

s=0

At−sf(s)

= At+1u0 +
t−1∑
s=0

At−sf(s) + f(t)

= A

[
Atu0 +

t−1∑
s=0

At−s−1f(s)

]
+ f(t)

= Au(t) + f(t)

∴ The equation (4.13) is the solution of equation (4.12).
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Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Solving initial value problems for linear systems

2. Companion matrix

3. The Cayley-Hamilton Theorem

4. The Putzer algorithm

5. Computing the powers of a square matrix

Check your Progress:

1. The statement "every square matrix satisfies its own characteristic equations" is

known as .............

(A) Convolution theorem (B) Cayley-Hamilton Theorem

(C Putzer algorithm (D) None of these

2. The spectrum of A is denoted by ..........

(A) σ(A) (B) r(A) (C) s(A) (D) None of these

3. If Au = λu has a non-trivial solution u for some λ, then λ is called ...........

(A) spectral radius of A (B) eigenvector of A

(C eigenvalue of A (D) None of these

4.2 Stability of Linear Systems

The solution of an initial value problem for a system of equations with n unknowns is

represented geometrically by a sequence of points {(u1(t), u2(t), . . . , un(t))}∞t=0 in Rn.

In many of the applications of this subject,it is useful to know the general location

of those points for large values of t. Of course, there are numerous possibilities. the

sequence could converge to a point at at least remain near a point, the sequence could

oscillate among values near several points, the sequence might become unbounded

or the sequence might remain in a bounded set but jump around in seemingly unpre-

dictable fashion. The study of these matters is called stability theory.
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Theorem 4.2.1. Let A be an n by n matrix with r(A) < 1. Then every solution u(t) of

(4.4) satisfies limt→∞ u(t) = 0. Furthermore, if r(A) < δ < 1, then there is a constant

C > 0 so that

|u(t)| ≤ Cδt|u(0)| (4.14)

for t ≥ 0 and every solution of u of (4.4).

Proof. Fix δ so that r(A) < δ < 1, the solution of equation u(t + 1) = Au(t), u(0) = u0

is

u(t) =
n−1∑
i=0

ci+1(t)Miu0,

where ci(t) are given by


c1(t+ 1)
c2(t+ 1)

...
cn(t+ 1)

 =


λ1 0 0 · · · 0 0
1 λ2 0 · · · 0 0
0 1 λ3 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · 1 λn



c1(t)
c2(t)

...
cn(t)



and


c1(0)
c2(0)

...
cn(0)

 =


1
0
...
0

 .

By equation (4.10),

c1(t+ 1) = λ1c1(t).

=⇒ | c1(t+ 1) | = |λ1c1(t)| = |λ1| |c1(t)|

≤ r(A) |c1(t)| .

Iterating this inequality and using c1(0) = 1, we have

| c1(1)) |≤ r(A),

|c1(2)| ≤ r(A) |c1 (1)| ⇒ |c1(2)| ≤ (r(A))2,

|c1 (3))| ≤ r(A) |c1(2)| ⇒ |c1 (3))| ≤ (r(A))3,

...

|c1(t)| ≤ (r(A))t ≤ δt, t ≥ 0.
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Again,

c2(t+ 1) = c1(t) + λ2c2(t).

=⇒ |c2(t+ 1)| ≤ |c1(t)|+ |λ2c2(t)|

≤ |c1(t)|+ r(A) |c2(t)|

=⇒ |c2(t+ 1)| ≤ r(A) |c2(t)|+ (r(A))t.

It follows from iteration and c2(0) = 0 that

|c2(1)| ⩽ 1,

|c2 (2)| ≤ (r(A))1 + r(A) |c2 (2)| = 2r(A)

=⇒ |c2(2)| ⩽ 2r(A),

|c2(3)| ⩽ (r(A))2 + r(A) | c2(2) |= (r(A))2 + 2(r(A))2

=⇒ |c2(3)| ⩽ 3(r(A))2,

...

|c2(t)| ⩽ t(r(A))t−1, t ≥ 0

=⇒ |c2(t)| ⩽ t

(
r(A)

δ

)t−1

δt−1.

Now,

lim
t→∞

(
t

(
r(A)

8

)t−1
)

=
δ

r(A)
lim
t→∞

t

(
r(A)

δ

)t

=
δ

r(A)
lim
t→∞

t(
r(A)
δ

)−t

=
δ

r(A)
lim
t→∞

1

− log( r(A)
δ )

( r(A)
δ )

t

.

=⇒ lim
t→∞

(
t

(
r(A)

8

)t−1
)

=
−δ
r(A)

1

log
(

r(A)
δ

) lim
t→∞

(
r(A)

δ

)t

→ 0 as t→ ∞

∴ t

(
r(A)

δ

)t−1

converges to 0 as t→ ∞

=⇒ t

(
r(A)

δ

)t−1

is a bounded sequence.

So, there is a constant B1 > 0 such that

131



| c2(t) |⩽ B1δ
t, t ≥ 0.

Similarly, we can show that for t ≥ 0,

|c3(t)| ⩽
t(t− 1)

2
(r(A))t−2 and

there is a constant B2 > 0 so that

|c3(t)| ⩽ B2δ
t, t ≥ 0.

Continuing in this way (by induction), we obtain a constant B∗ > 0 so that

|ci(t)| ⩽ B∗δt, t ≥ 0, i = 1, 2, . . . n.

Now, for any matrix M , there is a constant D > 0 so that

|Mv| ≤ D|v| ∀v in Rn.

Finally, the solution u(t) of equation

u(t+ 1) = Au(t), u(0) = u0 satisfies

|u(t)| =

∣∣∣∣∣
n−1∑
i=0

ci+1(t)Miu0

∣∣∣∣∣
≤

n−1∑
i=0

|ci+1(t)| |Miu0|

≤ B∗δt |u0|
n−1∑
i=0

Di

= Cδt |u0|

=⇒ |u(t)| ≤ Cδt |u0| , for C = B∗
n−1∑
i=0

Di.

Consequently, |u(t)| ⩽ Cδt |u0| holds. Since 0 < δ < 1, limt→∞ u(t) = 0.

Note: When all the solutions of the system go to the origin as t goes to infinity, the

origin is said to be “asymptotically stable”.

Theorem 4.2.2. If r(A) ≥ 1, some solution u(t) of (4.4) does not go to the origin as t

goes to infinity.
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Proof. Since r(A) ≥ 1, there is an eigenvalue λ of A so that |λ| ≥ 1. Let v be a

corresponding eigenvector. Then u(t) = λtv is a solution of (4.4) and |u(t)| = |λ|t|v| ↛

0 as t→ ∞.

Example 4.2.3. Solve u(t+ 1) =

[
1 −5
.25 −1

]
u(t).

The characteristic equation of A =

[
1 −5
.25 −1

]
is given by

|A− λI| = 0

=⇒
∣∣∣∣ λ− 1 −5

−25 λ+ 1

∣∣∣∣ = 0

=⇒ λ2 − 1 +
5

4
= 0

=⇒ λ2 = −1/4

=⇒ λ = ±i/2.

Then, σ(A) = {i/2,−i/2} and

r(A) = max{|i/2|, | − i/2|} =⇒ r(A) = 1/2 < 1.

∴ All solutions of this system converge to the origin as t→ ∞.

Theorem 4.2.4. Assume that

(a) r(A) ≤ 1.

(b) Each eigenvalue λ of A with |λ| = 1 is simple.

Then there is a constant C > 0 such that

|u(t)| ≤ C |u0| (4.15)

for t ≥ 0 and every solution u of (4.4).

Proof. Label the eigen values of A so that |λi| = 1 for i = 1, 2, . . . , k − 1 and |λi| < 1

for i = k, . . . n.

From theorem (4.1.9), we have


c1(t+ 1)
c2(t+ 1)

...
cn(t+ 1)

 =


λ1 0 0 · · · 0
1 λ2 0 · · · 0
0 1 λ3 · · · 0
0 · · · 1 · · · λn



c1(t)
c2(t)

...
cn(t)
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and


c1(0)
c2(0)

...
cn(0)

 =


1
0
...
0

 .
Now, consider

c1(t+ 1) = λ1c1(t), c1(0) = 1.

c1(t+ 1)− λ1c1(t) = 0

=⇒ c1(t) = c1(0)
t−1∏
s=0

λ1

= (λ1λ1 . . . λ1)

=⇒ c1(t) = λt1.

Next, consider c2(t+ 1) = c1(t) + λ2c2(t), c2(0) = 0

=⇒ c2(t+ 1) = λt1 + λ2c2(t),

∴ c2(t+ 1)− λ2c2(t) = λt1.

Since c2(0) = 0, we solve this equation by using annihilator method.

c2(t+ 1)− λ2c2(t) = λt1

=⇒ (E − λ2) c2(t) = λt1.

Since λ1t satisfies the homogeneous equation

(E − λ1)λ
t
1 = 0,

we have

(E − λ1) (E − λ2) c2(t) = 0.

Since λ1 ̸= λ2, the general solution is

c2(t) = B12λ
t
1 +B22λ

t
2 for some constants B12, B22.

Continuing in this way, we have

ci(t) = B1iλ
t
1 +B2iλ

t
2 + . . .+Biiλ

t
i, for i = 1, . . . , k − 1
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Consequently, there is a constant D > 0 so that

|ci(t)| =
∣∣B1iλ

t
1 +B2iλ

t
2 + . . .+Biiλ

t
i

∣∣
≤
∣∣B1iλ

t
1

∣∣+ ∣∣B2iλ
t
2

∣∣+ . . .+ | Biiλit
∣∣

= |B1i|+ |B2i|+ · · ·+ |Bii| .

=⇒ |ci(t)| ≤ D.

From (4.10),
ck(t+ 1) = ck−1(t) + λkck(t), ck(0) = 0

=⇒ |ck(t+ 1)| = |ck−1(t) + λkck(t)|

≤ |ck−1(t)|+ |λk| |ck(t)|

≤ D + |λk| |ck(t)| .

Choose δ = max {|λk| , |λk+1| , . . . |λn−1| , |λn|} < 1

Then

|ck(t+ 1)| ≤ D + δ |ck(t)| .

Since ck(0) = 0, by iteration

|ck(t)| ≤ D
t−1∑
j=0

δj

= D
[
1 + δ + δ2 + · · ·+ δt−1

]
≤ D[1− δ]−1

=
D

1− δ

That is, |ck(t)| ≤
D

1− δ
, for t ≥ 0.

In a similar manner, we find that there is a constant D∗ so that |ci(t)| ≤ D∗ for

i = 1, . . . n and t ≥ 0.

Thus, the solution of equation u(t+ 1) = Au(t), u(0) = u0 is given by
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u(t) =
n−1∑
i=0

ci+1(t)Miu0.

=⇒ |u(t)| ≤
n−1∑
i=0

|ci+1(t)| |Miu0|

≤ D∗
n−1∑
i=0

|Miu0|

= D∗ [|M0u0|+ |M1u0|+ · · ·+ |Mn−1u0|]

≤ D∗ [D0 |u0|+D1 |u0|+ · · ·+Dn−1 |u0|]
= D∗ (D0 +D1 + · · ·+Dn−1) |u0|

= D∗D|u0| , where D = D0 +D1 + · · ·+Dn−1

= C|u0|,where C = D∗D > 0 is a constant.

∴ |u(t)| ≤ C|u0| for t ≥ 0 and someC > 0.

Definition 4.2.5. Let A be an n×n matrix. Let λ be an eigenvalue of A of multiplicity m.

Then, the generalized eigenvectors of A corresponding to λ are the non-trivial solutions

v of (A − λI)mv = 0. Clearly, every eigenvector of A is also a generalized eigenvector.

The set of all generalized eigenvectors corresponding to λ, together with the zero vector, is

called the generalized eigenspace and is a vector space having dimension m.

Note:

1) The intersection of any two generalized eigenspaces is the zero vector.

2) A times a generalized eigenvector is a vector in the same generalized eigenspace.

Example 4.2.6. What are the generalized eigenvectors for

A =

 3 1 0
0 3 0
0 0 2

?
The characteristic equation of A is |λI − A| = 0.

=⇒

∣∣∣∣∣∣
λ− 3 1 0
0 λ− 3 0
0 0 λ− 2

∣∣∣∣∣∣ = 0

=⇒ (λ− 3)(λ− 3)(λ− 2) = 0

=⇒ (λ− 3)2(λ− 2) = 0

136



Therefore, A has eigen values λ1 = 3 of multiplicity two and λ2 = 2.

Then, the generalized eigen vector corresponding to λ1 = 3 are solutions of (A−3I)2v = 0.

=⇒

 3 1 0
0 3 0
0 0 2

−

 3 0 0
0 3 0
0 0 3

2  v1
v2
v3

 =

 0
0
0


=⇒

 0 1 0
0 0 0
0 0 1

2  v1
v2
v3

 =

 0
0
0


=⇒ v3 = 0.

Thus, the generalized eigenspace consists of all vectors with v3 = 0. This is a two dimen-

sional space, and  1
0
0

 ,
 0

1
0


are basis vectors.

Next, the generalized eigen vector corresponding to λ2 = 2 are solutions of (A− 2I)v = 0.

=⇒

 3 1 0
0 3 0
0 0 2

−

 2 0 0
0 2 0
0 0 2

 v1
v2
v3

 =

 0
0
0


=⇒

 1 1 0
0 1 0
0 0 0

 v1
v2
v3

 =

 0
0
0


=⇒ v1 + v2 = 0, v2 = 0.

Therefore, the generalized eigenspace consists of all vectors with v1 = 0 and v2 = 0.

This is a one-dimensional (generalized) eigenspace spanned by the eigenvector

 0
0
1

 .
Theorem 4.2.7. (The Stable Subspace Theorem) Let λ1, · · · , λn be the (not necessarily

distinct) eigenvalues of A arranged so that λ1, · · · , λk are the eigenvalues with |λi| < 1.

Let S be the k-dimensional space spanned by the generalized eigenvectors corresponding

to λ1, · · · , λk. If u is a solution of Eq. (4.4) with u(0) in S, then u(t) is in S for t ≥ 0 and

lim
t→∞

u(t) = 0.

Proof. Let u be a solution of Eq. (4.4) with u(0) in S. Since A takes every generalized

eigenspace into itself, it also takes S into itself. Then u(t) is in S for t ≥ 0. Choose δ
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so that

max {|λ1| , · · · , |λk|} < δ < 1.

As in the proof of Theorem (4.2.1) , there is a constant B > 0 such that

|ci(t)| ≤ Bδt

for t ≥ 0, 1 ≤ i ≤ k. By Theorem (4.1.9)

u(t) =
n−1∑
i=0

ci+1(t)Miu(0).

Recalling the definition of Mi, Eq. (4.7) and the fact that u(0) is a linear combination

of generalized eigenvectors corresponding to λ1, · · · , λk, we have, for i ≥ k,

Miu(0) = 0.

Then

|u(t)| ≤
k−1∑
i=0

|ci+1(t)| |Miu(0)|

≤ Bδt
k−1∑
i=0

|Miu(0)|

≤ Cδt|u(0)|, (t ≥ 0)

for some constant C,

so

lim
t→∞

u(t) = 0.

Note: The set S in Theorem (4.2.7) is called the "stable subspace" for Eq. (4.4). It can

be shown that every solution of the system that goes to the origin as t tends to infinity

must have its initial point in S. Thus, S can be described as the union of all sequences

{u(t)}∞t=0 that solve the system and satisfy limt→∞ u(t) = 0.

Example 4.2.8. What is the stable subspace for the system

u(t+ 1) =

 .5 0 0
1 .5 0
0 1 2

u(t)?
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The characteristic equation is

det

 λ− .5 0 0
−1 λ− .5 0
0 −1 λ− 2

 = (λ− .5)2(λ− 2) = 0.

Then, A has eigen values λ1 = .5 of multiplicity two and λ2 = 2.

Since |λ1| < 1, he stable subspace has dimension two and consists of the solutions of

(A− .5I)2v = 0.

=⇒

 .5 0 0
1 .5 0
0 1 2

−

 .5 0 0
0 .5 0
0 0 .5

2  v1
v2
v3

 =

 0
0
0


=⇒

 0 0 0
1 0 0
0 0 −3

2

2  v1
v2
v3

 =

 0
0
0


=⇒

 0 0 0
0 0 0
1 3

2
9
4

 v1
v2
v3

 =

 0
0
0


=⇒ v1 +

3

2
v2 +

9

4
v3 = 0

=⇒ 4v1 + 6v2 + 9v3 = 0.

Thus, S is the plane

4v1 + 6v2 + 9v3 = 0.

From Theorem (4.2.7), every solution that originates in this plane remains in the plane

for all values of t and converges to the origin as t → ∞. Since

 0
0
1

 is an eigenvector

corresponding to λ = 2, the solutions originating on the v3 axis are given by

u(t) = 2t

 0
0
v3

 , (t ≥ 0)

These remain on the v3 axis and approach infinity in the positive or negative direction,

depending on whether v3 is positive or negative.

Remark If some of the eigenvalues λ of A with |λ| < 1 are complex numbers, then the

corresponding generalized eigenvectors will also be complex, and the stable subspace is a

complex vector space. However, those generalized eigenvectors occur in conjugate pairs,

and it is not difficult to verify that the real and imaginary parts of these vectors are real

vectors that generate a real stable subspace of the same dimension.
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Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Asymptotically stable

2. Generalized eigenvectors

3. The Stable Subspace Theorem

4. Finding the stable subspace for the given system

Check your Progress:

1. If A is an n×n matrix with r(A) < 1, then every solution u(t) of u(t+1) = Au(t)

satisfies ..........

(A) limt→∞ u′(t) = 0 (B) limt→∞ u′(t) ̸= 0

(C limt→∞ u(t) = 0 (D) limt→∞ u(t) ̸= 0

2. When all solutions of the system go to the origin as t→ ∞, the origin is said to

be .............

(A) asymptotically stable (B) stable (C) exponentially stable (D) unstable

3. If A is an n × n matrix, and λ is an eigenvalue of A of multiplicity m, then the

generalized eigenvectors of A corresponding to λ are the non-trivial solutions v

of ..........

(A) (A− λI)nv = 0 (B) (A− λI)mv = 0

(C (A− λI)n−1v = 0 (D) (A− λI)m−1v = 0

Unit Summary:

In this unit, the solution of the initial value problem for homogeneous linear sys-

tems is derived through Putzer algorithm. Further, how the concept of generalized

eigen vectors is used to find the stable subspace of the given system is explained.

Glossary:

• det(λI − A) = 0 - Characteristic equation of the matrix A
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• σ(A) - The spectrum of A

• r(A) - The spectral radius of A

Self-Assessment Questions:

1. Convert the following second order system

v(t+ 2)− 6v(t+ 1) + 4w(t+ 1)− 3v(t) + w(t) = 0

w(t+ 2) + w(t+ 1) + 3v(t+ 1)− 2w(t) = t3t

into a first order system like Eq.(4.1)

2. Show that the characteristic equation for

y(t+ 2) + ay(t+ 1) + by(t) = 0

is the same as the characteristic equation of the companion matrix.

3. Verify the Cayley-Hamilton Theorem for A =

[
a b
c d

]
.

4. For which of the following systems do all solutions converge to the origin as

t→ ∞ ?

(a) u(t+ 1) =

[
.9 .2
−.1 .6

]
u(t). (b) u(t+ 1) =

 0 1 0
0 0 1
1 −3 3

u(t).
5. Find the stable subspace S for the following:

u(t+ 1) =

 0 1 0
0 0 1
1
4

3
4

0

u(t).
Exercises:

1. Use Eq. (4.6) to solve u(t+ 1) = Au(t) if

(a) A is the matrix
[
2 2
2 −1

]
.

(b) A is the matrix

 3 2 4
2 0 2
4 2 3

.

2. Use Theorem (4.1.9) to solve

y(t+ 2) + 3y(t+ 1) + 2y(t) = 0

y(0) = −1, y(1) = 7
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3. Find At, (t ≥ 0) for the following matrix A.

 0 1 0
0 1 0
0 1 1

.

4. Solve, using Theorem (4.1.13)

u(t+ 1) =

[
2 2
2 −1

]
u(t) +

[
0
1

]
, u(0) =

[
0
0

]
.

5. Prove the following: if the characteristic equation for

y(t+ n) + pn−1y(t+ n− 1) + · · ·+ p0y(t) = 0

has a multiple characteristic root λ with |λ| = 1, then the difference equation has

an unbounded solution.

6. Find the real two-dimensional stable subspace for

u(t+ 1) =

 0 1
2

−1
3
2

1 0
0 −5

6
1

u(t)
Answers for Check your Progress:

Section 4.1 1. (B) 2. (A) 3. (C)

Section 4.2 1. (C) 2. (A) 3. (B)
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Unit 5

Asymptotic Methods

Objectives:

This unit deals with approximations of solutions of difference equations for large

values of the independent variable.

5.1 Introduction

This section does not deal with difference equations but does present a number of

basic concepts and tools of asymptotic analysis.

Definition 5.1.1. If limt→∞
y(t)
z(t)

= 1, then we say that “y(t) is asymptotic to z(t) as t

tends to infinity" and write

y(t) ∼ z(t), (t→ ∞).

Example 5.1.2.

lim
t→∞

(4t2 + 4)
3/2

8t3
= lim

t→∞

(4t2)
3/2

(1 + 1/4t)3/2

8t3

= lim
t→∞

(2t)3
(
1 + 1

4t

) 3
2

8t3

= lim
t→∞

(
1 +

1

4t

)3/2

= 1

∴
(
4t2 + t

)3/2 ∼ 8t3, (t→ ∞).
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Example 5.1.3.

lim
t→∞

(
1

3t2+2t

)
1
3t2

= lim
t→∞

1

3t2
(
1 + 2

3t

) × 3t2

= 1

∴
1

3t2 + 2t
∼ 1

3t2
, (t→ ∞).

Example 5.1.4.

lim
t→∞

sinht

et/2
= lim

t→∞

(
et − e−t

2
× 2

et

)
= lim

t→∞

(
et − 1

et

)
et

= lim
t→∞

(
1− 1

e2t

)
= 1

∴ sinht ∼ et

2
, (t→ ∞).

Definition 5.1.5. If limt→∞
u(t)
v(t)

= 0, then we say that “u(t) is much smaller than v(t) as

t tends to infinity" and write

u(t) << v(t), (t→ ∞).

Note:1

y(t) ∼ z(t), (t→ ∞) iff y(t)− z(t) << z(t), (t→ ∞).

For, suppose that y(t) ∼ z(t), (t→ ∞).

Then

lim
t→∞

y(t)− z(t)

z(t)
= lim

z→∞

y(t)

z(t)
− lim

t→∞

z(t)

z(t)

= 1− 1

= 0.

⇒ y(t)− z(t) << z(t), (t→ ∞).

Conversely, suppose y(t)− z(t) << z(t), (t→ ∞).

⇒ lim
t→∞

y(t)− z(t)

z(t)
= 0

⇒ lim
t→∞

y(t)

z(t)
− 1 = 0

⇒ lim
t→∞

y(t)

z(t)
= 1

⇒ y(t) ∼ z(t), (t→ ∞).
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Note: 2 If y(t) ∼ z(t), (t→ ∞) and if u(t) << z(t), (t→ ∞), then

y(t) + u(t) ∼ z(t), (t→ ∞).

For,

lim
t→∞

y(t) + u(t)

z(t)
= lim

t→∞

y(t)

z(t)
+ lim

t→∞

u(t)

z(t)

= 1 + 0

= 1.

For example, we know that

(
4t2 + t

)3/2 ∼ 8t3 , (t→ ∞).

Also,

lim
t→∞

t2 log t

8t3
= lim

t→∞

log t

8t

= lim
t→∞

1/t

8

= lim
t→∞

1

8t

= 0

∴ t2 log t << 8t3, (t→ ∞).

Then (
4t2 + t

)3/2
+ t2 log t ∼ 8t3, (t→ ∞)

because

lim
t→∞

(4t2 + t)
3/2

+ t2 log t

8t3
= lim

t→∞

(4t2 + t)
3/2

8t3
+ lim

t→∞

t2 log t

8t3

= 1 + 0

= 1.

Example 5.1.6. Discuss the asymptotic behavior of (4t2 + t)
3/2.

Solution: Since 4t2 is much larger than t, when t is large, a good approximation should

be given by (4t2)
3/2

= 8t3. The corresponding relative error is given by

(4t2 + t)
3/2 − 8t3

8t3
=

8t3
(
1 + 1

4t

)3/2 − 8t3

8t3

=

(
1 +

1

4t

)3/2

− 1.
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If f(x) = (1 + x)3/2, [0, x], then by Mean value theorem, ∃ c ∈ (0, x) such that

f(x)− f(0)

x− 0
= f ′(c)

=⇒ (1 + x)3/2 − 1

x
=

3

2
(1 + c)

1
2

=⇒ (1 + x)3/2 = 1 +
3

2
(1 + c)1/2x.

Therefore,
(4t2 + t)

3/2 − 8t3

8t3
=

3

2
(1 + c)1/2

(
1

4t

)
, (5.1)

where 0 < c < 1
4t

.

∴ lim
t→∞

(4t2 + t)
3/2 − 8t3

8t3
= 0.

That is, the relative error goes to zero as t→ ∞. Also from (5.1),∣∣∣∣∣(4t2 + t)
3/2 − 8t3

8t3

∣∣∣∣∣ ≤ M

t
for some M > 0, and t ≥ 1.

Thus, we say that the relative error goes to zero as t→ ∞ at a rate proportional to

1/t.

Definition 5.1.7. If there are constants M and t0 so that |u(t)| ≤ M |v(t)| for t ≥ t0,

then we say that “u(t) is big oh of v(t) as t tends to infinity” and write

u(t) = O(v(t)), (t→ ∞).

Example 5.1.8. By previous example, we have

(4t2 + t)
3/2 − 8t3

8t3
= O

(
1

t

)
, (t→ ∞)

∴
(
4t2 + t

)3/2
= 8t3(1 +O(1/t)), (t→ ∞).

Let us find a better approximation than the above as follows:

(
4t2 + t

)3/2
= 8t3

(
1 +

1

4t

)3/2

= 8t3

[
1 +

3

2

(
1

4t

)
+

3

4
(1 + d)−1/21

2

(
1

4t

)2
]

= 8t3
[
1 +

3

8t
+

3

128
(1 + d)−1/2 1

t2

]
= 8t3

[
1 +

3

8t
+O

(
1

t2

)]
, (t→ ∞).
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We have (
4t2 + t

)3/2
= 8t3 + 3t2 +

3

16
(1 + d)−1/2t

> 8t3 + 3t2

> 8t3 ∀t > 0.

∴ The O
(

1
t2

)
estimate 8t3 + 3t2 is closer to (4t2 + t)

3/2 than the O
(
1
t

)
estimate 8t3 for all

t > 0.

(ie) O
(

1
t2

)
approximation is better than an O

(
1
t

)
approximation if t is sufficiently large.

Example 5.1.9. Consider the exponential integral.

En(x) =

∫ ∞

1

e−xt

tn
dt, (x > 0).

We shall first investigate the asymptotic behavior of En(x) as x→ ∞.

Take n =
1

tn
, dv = e−xtdt

=⇒ dn = −nt−n−1dt, v =
e−xt

−x
.

=
−n
tn+1

dt

∴
∫ ∞

1

e−xt

tn
dt =

[
−e−xt

xtn

]∞
1

+

∫ ∞

1

e−xt

x

(
−n
tn+1

)
dt =

e−x

x
− n

x

∫ ∞

1

e−xt

tn+1
dt

Now, ∫ ∞

1

e−xt

tn+1
dt ≤

∫ ∞

1

e−xtdt

=⇒
∫ ∞

1

e−xt

tn+1
dt ⩽

e−x

x
.

∴
∫ ∞

1

e−xt

tn
dt ⩽

e−x

x
− n

x

(
e−x

x

)
=
e−x

x

(
1 +

(
−n
x

))
.

So,for each fixed n,

En(x) =

∫ ∞

1

e−xt

tn
dt =

e−x

x

(
1 +O

(
1

x

))
, (x→ ∞).

By using integration by parts repeatedly, we get for each positive integer k,

En(x) =
e−x

x

[
1− n

x
+
n(n+ 1)

x2
− · · · · · ·+ (−1)k

n(n+ 1) · · · (n+ k − 1)

xk

+O
(

1

xk+1

)]
, (x→ ∞).
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The series in brackets is called an "asymptotic series" and it diverges for each x by the

ratio test.

Let us investigate the asymptotic behavior of En(x) for large n.

Take u = e−xt, dv = t−ndt

=⇒ du = −xe−xtdt, v =
t−n+1

−n+ 1
.

∴ En(x) =

∫ ∞

1

e−xt

tn
dt

=

[
e−xt t−n+1

−n+ 1

]∞
1

−
∫ ∞

1

t−n+1

−n+ 1

(
−x · e−xt

)
dt

=
e−x

n− 1
−
∫ ∞

1

x

n− 1
· e

−xt

tn−1
dt.

Since
∫ ∞

1

e−xt

tn−1
dt ⩽

∫ ∞

1

e−x

tn−1
dt

= e−x

∫ ∞

1

t1−ndt

= e−x

[
t2−n

2− n

]∞
1

=
e−x

n− 2
,

we have En(x) ≤ e−x

n− 1
− x

n− 1

(
e−x

n− 2

)
=

e−x

n− 1

[
1 +

(
−x
n− 2

)]
=

e−x

n− 1

[
1 +O

(
1

n− 2

)]
, (n→ ∞),

where x is any fixed positive number. So, we can write

En(x) =
e−x

n− 1

[
1 +O

(
1

n

)]
, (n→ ∞).

A second integration by parts gives

En(x) =
e−x

n− 1

[
1− x

n− 2
+O

(
1

(n− 2)(n− 3)

)]
, (n→ ∞)

=
e−x

n− 1

[
1− x

n− 2
+O

(
1

n2

)]
, (n→ ∞),

and the calculation can be continued to any number of terms.

Note: We could write O
(

1
n

)
instead of O

(
1

n−2

)
, and O

(
1
n2

)
instead of O

(
1

(n−2)(n−3)

)
without any loss of information.

150



Let Us Sum Up:

In this section, we have discussed the basic concepts and tools of asymptotic anal-

ysis. Moreover, some standard non-trivial examples were also given to understand the

study on asymptotic behavior.

Check your Progress:

1. If limt→∞
y(t)
z(t)

= 1, then we say that ..........

(A) y(t) is asymptotic to z(t) as t→ ∞

(B) y(t) is much smaller than z(t) as t→ ∞

(C) y(t) is equivalent to z(t) as t→ ∞

(D) None of these

2. If limt→∞
u(t)
v(t)

= 0, then we can denote it by .........

(A) u(t) ∼ v(t), (t→ ∞) (B) u(t) << v(t), (t→ ∞)

(C v(t) << u(t), (t→ ∞) (D) None of these

3. If y(t) ∼ z(t), (t→ ∞) and if u(t) << z(t), (t→ ∞) then .............

(A) y(t) + u(t) << z(t), (t→ ∞) (B) z(t) ∼ y(t) + u(t), (t→ ∞)

(C y(t) + u(t) ∼ z(t), (t→ ∞) (D) None of these

5.2 Asymptotic Analysis of Sums

Example 5.2.1. Find the asymptotic approximate solution of

yn+1 − nyn = 1, n = 1, 2, 3 . . .

Solution: W.K.T, the solution of the given equation is

yn = (n− 1)!

[
y1 +

n−1∑
k=1

1

k!

]
, n ⩾ 2.
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Clearly, the sum in brackets is a partial sum of the Taylor series for eθ with θ = 1.

∴ e =
∞∑
k=0

1

k!

=
n−1∑
k=0

1

k!
+

∞∑
k=n

1

k!

= 1 +
n−1∑
k=1

1

k!
+
ec

n!
, (0 < c < 1). (By Taylor’s formula)

⇒
n−1∑
k=1

1

k!
= e− 1− ec

n!
.

Thus, yn = (n− 1)!

[
y1 + e− 1− ec

n!

]
= (n− 1)!

[
y1 + e− 1 + 0

(
1

n!

)]
, (n→ ∞).

Thus, for large n, yn is approximately (y1 + e− 1)(n− 1)! and the relative error goes to

zero like 1
n!
.

Example 5.2.2. What is the asymptotic behavior of
∑n

k=1 k
k ?

Solution:
n∑

k=1

kk = 1 + 22 + 33 + 44 + · · ·+ (n− 1)n−1 + nn

= nn

[
1 +

{
(n− 1)n−1

nn
+

(n− 2)n−2

nn
+ · · ·+ 22

nn
+

1

nn

}]
= nn

[
1 +

{(
n− 1

n

)n−1
1

n
+

(
n− 2

n

)n−2
1

n2
+ · · ·+

(
1

n

)
1

nn−1

}]

< nn

[
1 +

{
1

n
+

1

n2
+ · · ·+ 1

nn−1

}]
.
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Now,
1

n
+

1

n2
+ · · ·+ 1

nn−1
=

1

n

[
1 +

1

n
+

1

n2
+ · · ·+ 1

nn−2

]
=

1

n

n−2∑
k=0

1

nk

=
1

n

n−2∑
k=0

(
1

n

)k

=
1

n

(
1− (1/n)n−1

1− 1/n

)
.

=⇒
n∑

k=1

kk < nn

[
1 +

1

n

(
1−

(
1
n

)n−1

1− 1/n

)]
.

∴
n∑

k=1

kk = nn[1 +O(1/n)], (n→ ∞)(
∵

1− (1/n)n−1

1− 1/n
is bounded

)
Hence, the asymptotic value of

∑n
k=1 k

k is given by the largest term nn with a relative

error that approaches zero like 1
n

as n→ ∞.

Similarly, we can prove that

n∑
k=1

kk = nn

[
1 +

(
n− 1

n

)n−1
1

n
+O

(
1

n2

)]
, (n→ ∞).

Here the two largest terms of the series gives an O
(

1
n2

)
asymptotic estimate.

Example 5.2.3. Discuss the asymptotic behavior of

n−1∑
k=2

2k log k.

Solution: W.K.T, the Abel’s summation formula is given by

n−1∑
k=m

akbk = bn

n−1∑
k=m

ak −
n−1∑
k=m

(
k∑

i=m

ai

)
∆bk.

Putting ak = 2k and bk = log k in the above formula, we have

n−1∑
k=2

2k log k = log n
n−1∑
k=2

2k −
n−1∑
k=2

(
k∑

i=2

2i

)
∆ log k

= log n
(
22 + 23 + · · ·+ 2n−1

)
−

n−1∑
k=2

(
22 + 23 + · · ·+ 2k

)
∆ log k
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= (log n) (2n − 4)−
n−1∑
k=2

(
2k+1 − 4

)
∆ log k

= 2n log n−
n−1∑
k=2

2k+1∆ log k − 4 log n+ 4
n−1∑
k=2

∆ log k.

Since the first two terms are asymptotically much larger than the last two terms, we

will neglect them.

By the mean value theorem,

∆ log k <
1

k
.

∴
n−1∑
k=2

2k+1∆ log k <
n−1∑
k=2

2k+1

(
1

k

)
= 23

(
1

2

)
+ 24

(
1

3

)
+ 25

(
1

4

)
+ · · ·+ 2n−1(

1

n− 2

)
+ 2n

(
1

n− 1

)
=

2n

n− 1

[
1 +

n− 1

n− 2
· 1
2
+
n− 1

n− 3
· 1

22
+ · · ·+ n− 1

2
· 1

2n−3

]
=

2n

n− 1

n−3∑
k=0

n− 1

n− (k + 1)
· 1

2k
.

We can easily verify that n−1
n−(k+1)

⩽ k + 1, when 0 ⩽ k ⩽ n− 3.

∴
n−1∑
k=2

2k+1∆ log k <
2n

n− 1

n−3∑
k=0

k + 1

2k
.

By the ratio test,
∑n−3

k=0
k+1
2k

is bounded.

∴
n−1∑
k=2

2k+1∆ log k < M

(
2n

n− 1

)
,M > 0 is a constant.

Thus,
n−1∑
k=2

2k log k = 2n log n+ 2nO
(

1

n− 1

)
= 2n log n

[
1 +O

(
1

(n− 1) log n

)]
, (n→ ∞).

Here, the asymptotic behavior of the sum is given not by the largest term but rather

by twice the largest term.
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Example 5.2.4. Discuss the asymptotic behavior of
∑n

k=1 log k.

Solution: W.K.T, the Euler summation formula for i ≥ 1 and n ≥ 2 is given by

n∑
k=1

y(k) =

∫ n

1

y(x)dx+
y(n) + y(1)

2
+

i∑
j=1

B2j

(2j)!

[
y(2j−1)(n)− y(2j−1)(1)

]
− 1

(2i)!

∫ n

1

y(2i)(x)B2i(x− [x])dx.

∴
n∑

k=1

log k =

∫ n

1

log xdx+
log n+ log 1

2
+

i∑
j=1

B2j

(2j)!

[
log(2j−1)(n)− log(2j−1)(1)

]
− 1

(2i)!

∫ n

1

log(2i) xB2i(x− [x])dx

=
[
x log x− x

]n
1
+

log n

2
+

i∑
j=1

B2j

(2j)!

[
(2j − 2)!

n2j−1
− (2j − 2)!

1

]
+

1

(2i)!

∫ n

1

(2i− 1)!

x2i
B2i(x− [x])dx

= n log n− n+ 1 +
log n

2
+

i∑
j=1

B2j

(2j) · (2j − 1)
· 1

n2j−1
−

i∑
j=1

B2j

(2j)(2j − 1)

+
1

2i

∫ n

1

B2i(x− [x])

x2i
dx

That is,
n∑

k=1

log k = n log n− n+
log n

2
+

i∑
j=1

B2j

(2j)(2j − 1)
· 1

n2j−1

+

{
1−

i∑
j=1

B2j

(2j)(2j − 1)
+

1

2i

∫ ∞

1

B2i(x− [x])

x2i
dx

}
− 1

2i

∫ ∞

n

B2i(x− [x])

x2i
dx.

(5.2)

The expression in braces is independent of n, so we take it as γ(i).
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∴ By eq. (5.2),

γ(i) =
n∑

k=1

log k − n log n+ n− log n

2
−

i∑
j=1

B2j

(2j)(2j − 1)
· 1

n2j−1

+
1

2i

∫ ∞

n

B2i(x− [x])

x2i
dx.

Then γ(i+ 1) =
n∑

k=1

log k − n log n+ n− log n

2

−
i+1∑
j=1

B2j

(2j)(2j − 1)
· 1

n2j−1
+

1

2i+ 2

∫ ∞

n

B2i+2(x− [x])

x2i+2
dx.

∴ γ(i+ 1)− γ(i) =− B2i+2

(2i+ 2)(2i+ 1)
· 1

n2i+1

+

∫ ∞

n

(
B2i+2(x− [x])

(2i+ 2)x2i+2
− B2i(x− [x])

(2i)x2i

)
dx

→ 0 as n→ ∞.

So, γ is independent of i.

Equation eq. (5.2) gives asymptotic estimates of
∑n

k=1 log k for each i = 1, 2, . . ..

For i = 2, we have

n∑
k=1

log k = n log n− n+
log n

2
+
B2

2n
+

B4

12n3
+ γ − 1

4

∫ ∞

n

B4(x− [x])

x4
dx

= n log n− n+
log n

2
+

1

12n
+ γ +O

(
1

n3

)
, (n→ ∞) (∵ B2 =

1

6
).

(5.3)

Now, applying exponential function on both sides, we get

n! = eγ
(n
e

)n√
n e

1
12n

+O( 1
n3), (n→ ∞)

or by Taylor’s formula,

n! = eγ
(n
e

)n √
n

(
1 +

1

12n
+

1

288n2
+O

(
1

n3

))
, (n→ ∞). (5.4)

To find γ, consider the Walli’s formula

π

2
= lim

n→∞

[
2.4 · · · · 2n

1 · 3 · · · (2n− 1)

]2
1

2n+ 1
.
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Now,[
2.4 · · · · 2n

1.3 · · · (2n− 1)

]2
1

2n+ 1
=

(
2.4 · · · 2n

1.3 · · · (2n− 1)
· 2.4 · · · 2n
2.4 · · · 2n

)2
1

2n+ 1

=

[
(2n) (2n)n!n!

(2n)!

]2
1

2n+ 1

=
24n(n!)4

((2n)!)2
.

1

2n+ 1

=
24n

2n+ 1
.
e4γ
(
n
e

)4n
n2
(
1 + 1

12n
+ 1

288n2 + 0
(

1
n3

))4
e2γ
(
2n
e

)4n
2n
(
1 + 1

24n
+ 1

4×288n2 + 0
(

1
n3

))2
=

ne2γ

2(2n+ 1)

(
1 + 1

12n
+ 1

288n2 +O
(

1
n3

))4(
1 + 1

24n
+ 1

4×288n2 +O
(

1
n3

))2 , (n→ ∞)

=
e2γ

4
(
1 + 1

2n

) (1 + 1
12n

+ 1
288n2 +O

(
1
n3

))4(
1 + 1

24n
+ 1

4×288n2 +O
(

1
n3

))2 , (n→ ∞).

=⇒ lim
n→∞

 ( 2.4...2n
1.3....(2n−1)

)2 1
2n+1

e2γ

4(1+ 1
2n

)

(1+ 1
12n

+ 1
288n2+O( 1

n3 ))
4(

1+ 1
24n

+ 1
4×288n2+O( 1

n3)
)2

 = 1.

=⇒ lim
n→∞

(
( 2.4...2n
1.3....(2n−1)

)2 1
2n+1

e2γ

4

)
= 1.

⇒
(

2 · 4 · · · 2n
1 · 3 . . . (2n− 1)

)2
1

2n+ 1
∼ e2γ

4
, (n→ ∞).

Hence, by Wallis formula,

e2γ

4
=

π

2

=⇒ e2γ = 2π

=⇒ eγ =
√
2π.

∴ Eq. (5.4) becomes

n! =
√
2πn

(n
e

)n(
1 +

1

12n
+

1

288n2
+O

(
1

n3

))
, (n→ ∞). (5.5)

This equation is called Stirling’s formula and it gives a good estimate for n!.

Note: The Stirling’s formula is valid for gamma function also.

(i.e, ) Γ(t+ 1) =
√
2πt

(
t

e

)t(
1 +

1

12t
+

1

288t2
+O

(
1

t3

))
, (t→ ∞) (5.6)
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Example 5.2.5. Discuss the asymptotic behavior of solution of the first-order linear

equation t∆u(t)− 1
2
u(t) = 0.

Solution: Consider

t∆u(t)− 1

2
u(t) = 0.

=⇒ t(u(t+ 1)− u(t))− 1

2
u(t) = 0

=⇒ t(u(t+ 1)) =

(
t+

1

2

)
u(t)

⇒ u(t+ 1) =
(t+ 1

2
)

t
u(t).

Its general solution is given by

u(t) =
cΓ(t+ 1

2
)

Γ(t)
, c is a constant.

⇒ u(t) =
cΓ
(
(t+ 1

2
) + 1

)
t+ 1

2

· t

Γ(t+ 1)

=
c(

1 + 1
2t

) Γ((t+ 1
2
) + 1

)
Γ(t+ 1)

⇒ u(t) =
c(

1 + 1
2t

)
√

2π(t+ 1
2
)
( t+ 1

2

e

)t+ 1
2

√
2πt( t

e
)t

(
1 + 1

12(t+ 1
2
)
+ 1

288(t+ 1
2
)2
+O

(
1
t3

) )(
1 + 1

12t
+ 1

288t2
+O

(
1
t3

)) , (t→ ∞).

⇒ u(t) ∼ c

√
2π
(
t+ 1

2

) ( t+ 1
2

e

)t+ 1
2

√
2πt( t

e
)t

, (t→ ∞).

Now, √
2π
(
t+ 1

2

) ( t+ 1
2

e

)t+ 1
2

√
2πt( t

e
)t

=
(t+ 1

2
)
1
2 (t+ 1

2
)t+

1
2

t
1
2 ( t

e
)tet+

1
2

=
(t+ 1

2
)
1
2
+t+ 1

2

tt+
1
2
√
e

=

(
t+ 1

2

t

)t(
t+ 1

2

t
1
2

)
1√
e

=

(
t+ 1

2

t

)t(
t(1 + 1

2t
)

t
1
2

)
· 1√

e

=

(
t+ 1

2

t

)t

.

(
1 +

1

2t

)
t
1
2

√
e
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Thus, using the fact that limt→∞

(
t+ 1

2

t

)t
=

√
e, we get

u(t) ∼ c · t 12 , (t→ ∞).

Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Asymptotic approximations of sums for large n

2. Stirling’s formula

3. Use of Euler summation formula in establishing asymptotic behavior

Check your Progress:

1. We can write O
(
1
n

)
instead of ..........

(A) O
(

1
n2

)
(B) O

(
1

n(n−1)

)
(C) O

(
1

n−3

)
(D) None of these

2. If there are constants M and t0 so that |u(t)| ≤ M |v(t)| for t ≥ t0, then we can

denote it by ........

(A) u(t) ∼ v(t), (t→ ∞) (B) u(t) << v(t), (t→ ∞)

(C) v(t) << u(t), (t→ ∞) (D) u(t) = O(v(t)), (t→ ∞)

3.
π

2
= lim

n→∞

[
2.4 · · · · 2n

1 · 3 · · · (2n− 1)

]2
1

2n+ 1
is known as ...........

(A) Taylor’s formula (B) Abel’s formula

(C) Walli’s formula (D) Stirling’s formula

5.3 Linear Equations

This section introduces the study of the asymptotic behavior of solutions of homoge-

neous linear equations.

Let u(t) be any nontrivial solution of the equation

u(t+ 2) + p1u(t+ 1) + p0u(t) = 0,
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where p0, p1 are constants and the characteristic roots λ1, λ2 satisfy |λ1| > |λ2|. Then

u(t) = aλt1 + bλt2 for some constants a, b.

If a ̸= 0, then

u(t+ 1)

u(t)
=
aλt+1

1 + bλt+1
2

aλt1 + bλt2

=
λ1

(
1 + b

a
λ1

(
λ2

λ1

)t+1 )
1 + b

a

(
λ2

λ1

)t → λ1, (t→ ∞).

If a = 0, then
u(t+ 1)

u(t)
=
bλt+1

2

bλt2
= λ2.

So, in any case the ratio u(t+1)
u(t)

converges to a root of the characteristic equation as t

goes to infinity.

If |λ1| = |λ2|, this property may fail. The equation

u(t+ 2)− u(t) = 0

has characteristic roots λ = ±1 (so |λ1| = |λ2| ), and for the solution u(t) = 2+ (−1)t,

we find
u(t+ 1)

u(t)
=

2 + (−1)t+1

2 + (−1)t
.

This expression produces a sequence that alternates between 3 and 1
3
.

Definition 5.3.1. A homogeneous linear equation

u(t+ n) + pn−1(t)u(t+ n− 1) + · · ·+ p0(t)u(t) = 0 (5.7)

is said to be of “Poincaré type" if limt→∞ pk(t) = pk for k = 0, 1, · · · , n − 1 (i.e., if the

coefficient functions converge to constants as t goes to infinity).

Theorem 5.3.2. Poincaré’s Theorem

If Eq. (5.7) is of Poincaré type and if the roots λ1, · · · , λn of λn + pn−1λ
n−1 + · · ·+ p0 = 0

satisfy |λ1| > |λ2| > · · · > |λn|, then every nontrivial solution u of Eq. (5.7) satisifes

lim
t→∞

u(t+ 1)

u(t)
= λi

for some i.
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Proof. Since the main ideas of the proof are evident in the case n = 2, we consider

that case only and write Eq. (5.7) in the form

u(t+ 2) + (a+ α(t))u(t+ 1) + (b+ β(t))u(t) = 0, (5.8)

where α(t), β(t) → 0 as t → ∞. Recall that the roots λ1, λ2 of the characteristic

equation λ2 + aλ+ b = 0 satisfy |λ1| > |λ2|.

Let u(t) be a nontrivial solution of (5.8) and let x(t), y(t) be chosen to satisfy

x(t) + y(t) = u(t)

λ1x(t) + λ2y(t) = u(t+ 1). (5.9)

The system (5.9) has for each t a unique nontrivial solution since

det

[
1 1
λ1 λ2

]
= λ2 − λ1 ̸= 0

and either u(t) or u(t+ 1) is not zero.

Using Eqs. (5.8) and (5.9), we arrive at the system

x(t+1) = λ1x(t) + (λ2 − λ1)
−1 [ [(λ1α(t) + β(t))x(t)] + [(λ2α(t) + β(t)) y(t)]

]
, (5.10)

y(t+ 1) = λ2y(t) + (λ1 − λ2)
−1 [ [(λ2α(t) + β(t)) y(t)] + [(λ1α(t) + β(t))x(t)]

]
. (5.11)

Choose ϵ > 0 small enough that |λ2|+ϵ
|λ1|−ϵ

< 1, and choose N so large that

|λ1 − λ2|−1 |λiα(t) + β(t)| < ϵ

2
, (i = 1, 2)

if t ≥ N .

Let t ≥ N and suppose |x(t)| ≥ |y(t)|.

From Eq. (5.10),

|x(t+ 1)| ≥ |λ1| |x(t)| −
ϵ

2
(|x(t)|+ |y(t)|)

≥ (|λ1| − ϵ) |x(t)|.
From Eq. (5.11),

|y(t+ 1)| ≤ |λ2| |y(t)|+
ϵ

2
(|y(t)|+ |x(t)|)

≤ (|λ2|+ ϵ) |x(t)|.

Taking a ratio of these inequalities, we have
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∣∣∣∣y(t+ 1)

x(t+ 1)

∣∣∣∣ ≤ |λ2|+ ϵ

|λ1| − ϵ
< 1.

So, |x(t + 1)| > |y(t + 1)|, and inductively we conclude that |x(s)| > |y(s)| for all

s > t. Consequently, there is a number M ≥ N so that either

|x(t)| > |y(t)| for t ≥M (5.12)

or

|y(t)| > |x(t)| for t ≥M. (5.13)

Suppose that Eq. (5.12) is true. There is a number r in [0, 1] (the "limit superior")

so that for each δ > 0

∣∣∣∣y(t)x(t)

∣∣∣∣ < r + δ (5.14)

for sufficiently large t, and

∣∣∣∣y(t)x(t)

∣∣∣∣ > r − δ (5.15)

for infinitely many values of t.

From Eqs. (5.11) and (5.10),

|y(t+ 1)| ≤ |λ2| |y(t)|+ ϵ|x(t)|

|x(t+ 1)| ≥ |λ1| |x(t)| − ϵ|x(t)|
for t ≥M , so by Eq. (5.15)

r − δ <

∣∣∣∣y(t+ 1)

x(t+ 1)

∣∣∣∣ ≤ |λ2|
∣∣∣ y(t)x(t)

∣∣∣+ ϵ

|λ1| − ϵ

for infinitely many values of t. By Eq. (5.14)

r − δ <
|λ2| (r + δ) + ϵ

|λ1| − ϵ

or

r <
δ (|λ1|+ |λ2| − ϵ) + ϵ

|λ1| − |λ2| − ϵ
.
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Since ϵ and δ may be chosen as small as we like, it follows that r = 0. Thus if Eq.

(5.12) is true, then limt→∞
y(t)
x(t)

= 0.

From Eq. (5.9),
u(t)
x(t)

→ 1 and u(t+1)
x(t)

→ λ1 as t→ ∞. Then u(t+1)
u(t)

→ λ1 as t→ ∞.

In a similar way, Eq. (5.13) implies

limt→∞
x(t)
y(t)

= 0 and limt→∞(u(t+ 1)/u(t)) = λ2.

Theorem 5.3.3. Perron’s Theorem

In addition to the assumptions of Theorem 5.3.2 , suppose that p0(t) ̸= 0 for each t. Then

there are n independent solutions u1, · · · , un of Eq. (5.7) that satisfy

lim
t→∞

ui(t+ 1)

ui(t)
= λi, (i = 1, · · · , n).

Example 5.3.4. Consider (t+ 2)u(t+ 2)− (t+ 3)u(t+ 1) + 2u(t) = 0.

Dividing throughout by t+ 2, we obtain

u(t+ 2)− t+ 3

t+ 2
u(t+ 1) +

2

t+ 2
u(t) = 0,

and the equation is of Poincare type since t+3
t+2

→ 1 and 2
t+2

→ 0 as t→ ∞.

The associated characteristic equation is λ2 − λ = 0, so λ1 = 1 and λ2 = 0.

By Perron’s Theorem, there are independent solutions u1, u2 so that
u1(t+1)
u1(t)

→ 1, u2(t+1)
u2(t)

→ 0 as t→ ∞.

Remark 5.3.5. For most purposes, we would like to have information about the asymp-

totic behavior of the solutions themselves. Knowing the limiting value of u(t+1)
u(t)

gives

partial information but does not immediately yield an asymptotic approximation for

u(t). For example, some of the functions that satisfy limt→∞
u(t+1)
u(t)

= 1 are u(t) = 5, t,

3t2 + 12, t67, e
√
t, e−

√
t, 1

t3−7
, log t, etc.

Theorem 5.3.6. Suppose u(t+1)
u(t)

→ λ (t→ ∞).

(a) If λ ̸= 0, then u(t) = ±λtez(t) with z(t) << t, (t→ ∞).

(b) If λ = 0, then |u(t)| = e−z(t) with z(t) >> t, (t→ ∞).

Proof. Let v(t) =
∣∣∣u(t)λt

∣∣∣. Then

v(t+ 1)

v(t)
=

∣∣∣∣∣
u(t+1)
λt+1

u(t)
λt

∣∣∣∣∣ =
∣∣∣∣1λ u(t+ 1)

u(t)

∣∣∣∣→ 1, (t→ ∞).
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Since v(t) is positive for t sufficiently large, we can let z(t) = log v(t). Then

z(t+ 1)− z(t) = log
v(t+ 1)

v(t)
→ 0, (t→ ∞).

Let ϵ > 0 and choose m so that |z(t+ 1)− z(t)| < ϵ for all t > m. For t > m,

|z(t)− z(m)| ≤
t∑

k=m+1

|z(k)− z(k − 1)|

< ϵ(t−m.

So

|z(t)| < ϵ(t−m) + |z(m)|

or ∣∣∣∣z(t)t
∣∣∣∣ < ϵ

(
1− m

t

)
+

∣∣∣∣z(m)

t

∣∣∣∣
< 2ϵ

for t sufficiently large. Since ϵ > 0 was arbitrary, z(t) << t, (t → ∞), and the proof of

(a) is complete.

The proof of part (b) is similar.

Remark 5.3.7. If λ = 0, then Theorem 5.3.6(b) implies that u(t) must tend to zero faster

than e−ct for every positive constant c. For λ > 0, Theorem 5.3.6(a) is equivalent to the

statement that (λ− δ)t ≪ |u(t)| ≪ (λ+ δ)t, (t→ ∞) for each small δ > 0 .

Example 5.3.8. We know that one solution of

(t+ 2)u(t+ 2)− (t+ 3)u(t+ 1) + 2u(t) = 0.

is u(t) = 2t

t!
. Note that u(t+1)

u(t)
= 2

t+1
→ 0 as t→ ∞, so we can take u2(t) = 2t

t!
.

Let’s try to produce more information about u1(t). We know that

u1(t+ 1)

u1(t)
= 1 + φ(t), (5.16)

where φ(t) → 0 as t→ ∞. Writing the difference equation in the form

(t+ 2)
u1(t+ 2)

u1(t+ 1)
− (t+ 3) + 2

u1(t)

u1(t+ 1)
= 0

and substituting Eq. (5.16), we have

(t+ 2)(1 + φ(t+ 1))− (t+ 3) +
2

1 + φ(t)
= 0.
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By the Mean Value Theorem (applied to the function 2
1+u

),

2

1 + φ(t)
= 2 +O(φ(t)), (t→ ∞).

So we have

(t+ 2)(1 + φ(t+ 1))− (t+ 3) + 2 +O(φ(t)) = 0.

Rearranging,

φ(t+ 1) = − 1

t+ 2
+O

(
φ(t)

t

)
, (t→ ∞).

We conclude that

φ(t) = − 1

t+ 1
+O

(
1

t2

)
, (t→ ∞).

Substitute this last expression into Eq.(5.16) to obtain

u1(t+ 1) =
t

t+ 1

(
1 +O

(
1

t2

))
u1(t).

We solve this equation by iteration, beginning with a value t = t0 so that u1 (t0) ̸= 0 and

1 +O
(

1
t2

)
> 0 for t ≥ t0 :

u1(t) =
t−1∏
s=t0

s

s+ 1

t−1∏
s=t0

(
1 +O

(
1

s2

))
u1 (t0)

=
t0
t
u1 (t0)

t−1∏
s=t0

(
1 +O

(
1

s2

))
.

In order to complete the calculation, we need the following theorem.

Theorem 5.3.9. Assume that both
∑∞

s=t0
as and

∑∞
s=t0

a2s converge and 1 + as > 0 for

s ≥ t0. Then limt→∞
∏t−1

s=t (1 + as) exists and is equal to a positive constant.

Returning to our calculation, we see that limt→∞ tu1(t) = C ̸= 0, so we finally have

u1(t) ∼
C

t
, (t→ ∞).

Note: An equation that is not of Poincaré type can be converted to one of Poincaré

type by a change of variable.

Example 5.3.10. Consider u(t+ 2)− (t+ 1)u(t+ 1) + u(t) = 0.

If this equation has a solution that increases rapidly as t increases, then the terms u(t+2)

and (t+ 1)u(t+ 1) will increase more rapidly than the term u(t), so

u(t+ 2) ∼ (t+ 1)u(t+ 1), (t→ ∞).
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This relation suggests that u(t) may grow as (t− 1) does! Consequently, we factor off this

behavior by making the change of variable

u(t) = (t− 1)!v(t).

The resulting equation for v is

v(t+ 2)− v(t+ 1) +
v(t)

t(t+ 1)
= 0

which is of Poincaré type with characteristic roots λ = 0, 1. As in the previous example,

set
v(t+ 1)

v(t)
= 1 + φ(t),

where φ(t) → 0 as t→ ∞, and substitution yields an equation for φ :

φ(t+ 1) +
1

t(t+ 1)

1

1 + φ(t)
= 0.

Since 1
1+φ(t)

= 1 +O(φ(t)) as t→ ∞),

φ(t+ 1) = − 1

t(t+ 1)
(1 +O(φ(t))), (t→ ∞).

So

φ(t) = O
(
1

t2

)
, (t→ ∞).

Then

v(t+ 1) =

(
1 +O

(
1

t2

))
v(t)

and Theorem 5.3.9 implies

v(t) ∼ C, (t→ ∞)

for some constant C. Finally, we have

u1(t) ∼ C(t− 1)!, (t→ ∞).

Next, set

v(t+ 1)

v(t)
= ψ(t),

where ψ(t) → 0 as t→ ∞. Then ψ satisfies
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ψ(t) =
1

t(t+ 1)
+ ψ(t)ψ(t+ 1)

or

ψ(t) =
1

t(t+ 1)

(
1 +O

(
1

t2

))
, (t→ ∞).

It follows that

v(t+ 1) =
1

t(t+ 1)

(
1 +O

(
1

t2

))
v(t), (t→ ∞).

Iteration and Theorem 5.3.9 yield a constant D so that

v(t) ∼ D

t!(t− 1)!
, (t→ ∞)

and we obtain a second solution u2(t) that satisfies

u2(t) ∼
D

t!
, (t→ ∞).

Example 5.3.11. Consider u(t+ 2)− 3tu(t+ 1) + 2t2u(t) = 0.

If we seek a rapidly increasing solution, it is not clear in this case that any term is asymp-

totically smaller than the others. In fact, a growth rate of t! would roughly balance the

size of the three terms. Let

u(t) = t!v(t).

Then v(t) satisfies

v(t+ 2)−
(
3− 6

t+ 2

)
v(t+ 1) + 2

(
1− 3t+ 2

(t+ 1)(t+ 2)

)
v(t) = 0

which is of Poincaré type. By Perron’s Theorem, there are independent solutions v1, v2 so

that
v1(t+ 1)

v1(t)
→ 1,

v2(t+ 1)

v2(t)
→ 2

as t→ ∞. Let v1(t+1)
v1(t)

= 1 + φ(t) so that limt→∞ φ(t) = 0. A short computation leads to

φ(t+ 1)− 2φ(t) = − 2

(t+ 1)(t+ 2)
+O

(
φ(t)

t

)
+O

(
φ2(t)

)
, (t→ ∞).

If we call the righthand side of the preceding equation r(t), then the general solution is

φ(t) = 2t−1

(
C +

t−1∑
s=1

r(s)

2s

)
.
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To satisfy the condition limt→∞ φ(t) = 0, choose C = −
∑∞

s=1
r(s)
2s

, then

φ(t) = −
∞∑
s=t

r(s)

2s−t+1

and

|φ(t)| ≤ max
s≥t

|r(s)|
∞∑
s=t

1

2s−t+1

or

|φ(t)| ≤ max
s≥t

|r(s)|.

It follows that φ(t) = O (1/t2) as t → ∞, v1(t) ∼ C1, (t → ∞). A solution u1(t) of the

original equation then satisfies

u1(t) ∼ C1t!, (t→ ∞).

Now, set
v2(t+ 1)

v2(t)
= 2 + ψ(t)

with ψ(t) << 1(t→ ∞). We find

ψ(t+ 1)− ψ(t)

2
=

3t+ 4

(t+ 1)(t+ 2)
+O

(
ψ2(t)

)
, (t→ ∞).

Since
3t+ 4

(t+ 1)(t+ 2)
=

3

t
+O

(
1

t2

)
, (t→ ∞),

the general solution is

ψ(t) = 21−t

[
C +

t−1∑
s=1

2s
(
3

s
+O

(
1

s2

)
+O

(
ψ2(s)

))]
, (t→ ∞).

Also,
t−1∑
s=1

2s
(
3

s

)
=

3

t
2t
[
1 +O

(
1

t

)]
, (t→ ∞).

Since

t−1∑
s=1

2s
(

1

s2

)
= O

(
2t

t2

)
, (t→ ∞),

we have

ψ(t) =
6

t
+O

(
1

t2

)
, (t→ ∞).
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Then, v2 satisfies

v2(t+ 1) = 2

(
t+ 3

t

)[
1 +O

(
1

t2

)]
v2(t)

and we find by iteration

v2(t) ∼ C2t
32t−1, (t→ ∞).

So finally

u2(t) ∼ C22
t−1(t+ 3)!, (t→ ∞).

Let Us Sum Up:

In this section, we have discussed the following concepts:

1. Asymptotic behavior of solutions of homogeneous linear equations

2. Poincare type difference equation

3. Poincare’s Theorem

4. Perron’s Theorem

Check your Progress:

1. If u(t+1)
u(t)

→ λ (t→ ∞) and if λ ̸= 0, then ..........

(A) u(t) = ±λtez(t) with z(t) << t, (t→ ∞)

(B) u(t) = ±λtez(t) with t << z(t), (t→ ∞)

(C) u(t) = ±λtez(t) with z(t) ∼ t, (t→ ∞)

(D) None of these

2. If u(t+1)
u(t)

→ λ (t→ ∞) and if λ = 0, then ..........

(A) |u(t)| = e−z(t) with z(t) << t, (t→ ∞)

(B) |u(t)| = e−z(t) with z(t) ∼ t, (t→ ∞)

(C) |u(t)| = e−z(t) with z(t) >> t, (t→ ∞)

(D) None of these
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3. Which of the following functions doesn’t satisfy limt→∞
u(t+1)
u(t)

= 1?

(A) 5 (B) t (C) log t (D) None of these

Unit Summary:

Approximations of solutions to difference equations for large values of the inde-

pendent variable are studied in this unit. The asymptotic behavior of solutions of

homogeneous linear equations is discussed using Poincare’s theorem and Perron’s the-

orem.

Glossary:

• y(t) ∼ z(t), (t→ ∞) - y(t) is asymptotic to z(t) as t tends to infinity

• u(t) << v(t), (t→ ∞) - u(t) is much smaller than v(t) as t tends to infinity

• u(t) = O(v(t)), (t→ ∞) - u(t) is big oh of v(t) as t tends to infinity

Self-Assessment Questions:

1. Verify the following asymptotic relation: 1
t2+2t−7

∼ 1
t2
, (t→ ∞).

2. Verify

(a) 5x2 sin 3x = O (x2) , (x→ ∞).

(b) 1
x−2

= 1
x

[
1 +O

(
1
x

)]
, (x→ ∞).

3. Give estimates of

(a)
∫∞
1

e−3t

t50
dt.

(b)
∫∞
1

e−50t

t3
dt.

4. Use Taylor’s formula to obtain an asymptotic estimate for

n−1∑
k=1

1

(2k)!
, (n→ ∞)

5. Investigate the asymptotic behavior of the solutions of

t2u(t+ 2)− 3tu(t+ 1) + 2u(t) = 0

as t→ ∞.
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Exercises:

1. Verify tan (1/t2) << 10
t
, (t→ ∞).

2. Show that
√
t2 + 1 = t

[
1 + 1

2t2
+O

(
1
t4

)]
, (t→ ∞).

3. Use integration by parts to show∫ ∞

0

e−t

x+ t
dt =

1

x

(
1− 1

x
+O

(
1

x2

))
, (x→ ∞)

4. Verify

(a)
∑n

k=1 k! = n!
[
1 +O

(
1
n

)]
, (n→ ∞).

(b)
∑n

k=1 k! = n!
[
1 + 1

n
+O

(
1
n2

)]
, (n→ ∞).

5. Verify Wallis’ formula:

π

2
= lim

n→∞

[
2 · 4 · · · · · · 2n

1 · 3 · · · · · · (2n− 1)

]2
1

2n+ 1

(Hint: first show that ∫ π
2

0

sin2n−1 xdx =
2 · 4 · · · (2n− 2)

1 · 3 · · · (2n− 1)

and ∫ π
2

0

sin2n xdx =
1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)
π

2

Next, integrate the inequalities sin2n+1 x ≤ sin2n x ≤ sin2n−1 x, which hold on the

interval
[
0, π

2

]
.)

6. Show that if limt→∞
u(t+1)
u(t)

= λ > 0, then for each δ in (0, λ), (λ−δ)t << |u(t)| <<

(λ+ δ)t, (t→ ∞).

Answers for Check your Progress:

Section 5.1 1. (A) 2. (B) 3. (C)

Section 5.2 1. (C) 2. (D) 3. (C)

Section 5.3 1. (A) 2. (C) 3. (D)
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